
International Conference on Software Maintenance (ICSM '99), Aug 30-Sep 3, Oxford, England, 1999.

VISUALIZING SOFTWARE RELEASE HISTORIES:
THE USE OF COLOR AND THIRD DIMENSION

Harald Gall, Mehdi Jazayeri,
Distributed Systems Group,

Technical University of Vienna,
Argentinierstr. 8/184-1, A-1040 Wien, Austria

{gall, jazayeri}@infosys.tuwien.ac.at

Claudio Riva
Nokia Research Center,

Software Technology Laboratory,
P.O. Box 407, FIN-00045 Helsinki, Finland

claudio.riva@nokia.com

Abstract

The data regarding the components of a software system consists

of a large amount of information such as version history, number of
lines, defect density, and complexity measures. The ability to quickly
grasp a comprehensive view of the evolution and dependencies of
such information is the key to making informed decisions about
future developments of the system. Managers usually make such
decision based only on expert judgement.

For help in making such decisions, we can turn to the evolution
history of large software systems, which contain a wealth of hidden
information. Traditionally, this information is passed on through
anecdotes without any supporting analytical data. This paper
reports on our attempts to make such information more concrete
through information visualization techniques. We present a three-
dimensional visual representation for examining a system’s
software release history. The structure of the system is displayed by
2-D or 3-D graphs. The historical information is displayed by using
time as the third dimension. Colors are used for displaying module
properties and their historical changes in the system.

A supporting software tool enables not only visualization but
also navigation in the 3-D space to change the viewpoint, to browse
system information, to find interesting patterns and to discover
previously unknown relationships among system components.

Keywords: software release history, information visualization,

software evolution, third dimension, color, system architecture,
software maintenance.

1 INTRODUCTION
Understanding a large software system requires the use of

abstract representations to cope with the amount of details present at
the source code level. Decomposition into modules and software
measurement are technologies that can simplify this task. Software
measures such as code size, complexity measures and defect density
are a concise and informative representation of the properties of the
source code. The evaluation and comparison of them can lead to the
discovery of anomalous behaviors or unknown dependencies. Such
information is valuable for software engineers, analysts and
managers.

In evolving through releases, developers modify system
structure and properties. Tracking their historical evolution allows
the programmers to document the events that influenced the system
evolution and to identify the reasons for structural problems [11].

The collection of the data regarding a software system
(structural information and measures) and its evolution produces a
large amount of data. A challenging issue in their examination is
how to extract the useful information hidden within the data.

Information visualization [13] [27] is a recent and emerging
technology which attempts to adopt graphics techniques for
visualizing abstract entities that have no concrete shapes.
Information visualization has proven to be an effective solution for
understanding and uncovering information embedded in large data
sets.

This paper reports on our attempts to develop new three-
dimensional visualization techniques and to apply them to study the
evolution of an industrial software system as represented by a
database of 20 versions of the system released over a two-year
period. Previous works identified some key metrics to measure and
initially used simple two-dimensional graphs to plot them [11].
Previous work also concentrated on discovering patterns in the
evolution of the software [12]. Our work investigates the use of
information visualization and in particular of two graphical
technologies: color and third dimension. Such techniques have
rarely been applied to the field of software understanding. Related
techniques have used primarily two dimensions and have focused on
history visualization through animation [5].

Our 3-D representation provides the simultaneous visualization
of system structure, historical evolution and software properties.
The system structure is displayed by 2-D or 3-D graphs. The third
dimension is used to represent time. Colors are used to represent a
particular property (e.g. version number, code size, etc.).

The contributions of this paper are:
• the use of information visualization to study the release history

of a software system.
• the combination of 3-dimensional views and color to the study

of abstract software structures.
• presentation of a particular industrial system’s visualization to

show the kinds of analyses and observations that are possible
from such release histories.

Our technique is supported by a tool written in Java, using
VRML to render and navigate 3-D spaces. The tool is published on

the web so that users can check the ideas reported in this paper. The
link is: http://www.infosys.tuwien.ac.at/visualization.

The paper is structured as follows. In Section 2 we discuss the
related work. Section 3 presents the issues in studying software
release histories. Section 4 describes our industrial case study for
which the visualization techniques were developed. Section 5
presents our visualization technique and some of the results of its
application to the case study. Section 6 presents the benefits and
challenges of the approach and Section 7 concludes the paper by
drawing some conclusions and giving some ideas for future work.

This work was supported by the European Commission within
the ESPRIT Framework IV project ARES (Architectural Reasoning
for Embedded Systems). The technique was developed in
conjunction with an industrial case study as part of the project
ARES. The present publication only allows us to show black and
white graphs. A copy of this paper, with color graphics may be
found at: www.infosys.tuwien.ac.at/~riva/Docs/bibl.

2 RELATED WORK
Computer graphics has developed sophisticated techniques for

visualizing real-world objects on the computer screen. Information
visualization adopts such technologies to examine and comprehend
masses of information contained in databases, documents and other
data sources. Information visualization can represent data in a
compact way and can uncover useful and interesting patterns in
underlying data. A general overview of these technologies can be
found in Keim's tutorials [15] [16] [17]. Some relevant approaches
in the area of software visualization are mentioned here.

Most software visualization [30] work has concentrated on
code-level visualization or on performance visualization. This is not
the focus of our work. Our focus is on structural and architectural
levels of large systems. In this area, Eick et al. have developed a set
of tools for visualizing several classes of data [6] [7] [5]. In
particular, SeeSys [1] is a visualization system for displaying the
statistics associated with code that is divided hierarchically into
subsystems, directories and files. Animation is used to show the
historical changes of the system.

The graphical technique adopted in SeeSys is suggested by the
work of Johnson and Shneiderman on visualizing hierarchical data
using Treemaps [28] [14]. The approach uses the screen-filling
method for displaying the attribute values of hierarchy components.
The color of the region can provide an additional attribute.

Software visualization using three dimensional display is a
current research area. Koike developed a 3-D framework to
visualize the execution of two parallel/concurrent computer systems
[18]. Koike et al. also proposed a 3-D framework for both version
control and module management [20]. Ware et al. investigate how to
visualize object oriented software in three dimensions [34]. An
evaluation of the 3-D approach has been conducted by Ware et al.
[34] and by Chu et al. [4]. Feijs et al. [9] have proposed a 3-D
visualization for the analysis of software architectures.

3-D displays are also investigated for algorithm animation by
Stasko et al. [29] and by Brown et al. [2]. 3-D graphics for
displaying hierarchical structures have been developed by Card,
Mackinlay and Robertson [25]. Their work provides ConeTree
which is a technology for displaying the hierarchical objects in 3-D
space. Improvements of ConeTree are described by Carrière and
Kazman [3] and by Koike [19].

3 THE SOFTWARE RELEASE HISTORY
A software system evolves through successive releases. Release

after release the system is modified adding new functionality,
removing others or changing the existing ones. The system release
is a mechanism for the controlled implementation of changes.
Changes become an integral part of the system when the new release
is delivered and no other changes are allowed after the delivery.
Successive changes are integrated in future releases. Therefore, the
system at a generic release may consist of software components
(such as source files, documentation, configuration files) which
have been added or changed in different moments of the life-cycle.
The system release can identify uniquely a well-defined
implementation (source code, documentation, configuration files) of
the system. The Software Release History is a method to track the
historical changes of system components. The next Section 3.1
describes the abstract model that the method uses. Section 3.2
describes the method itself.

3.1 System abstraction
Understanding a large software system by examining its source

code is an arduous task. The amount of details present in the source
code would overwhelm the examiner. Abstract representations of
the source code simplify human comprehension. The Software
Release History uses an abstract representation that is generated in
two steps: system decomposition and measuring software attributes.
System decomposition

The software system is decomposed in two elements: modules
and relationships between modules. They represent the abstract
structure of the system.

A module is the basic software component of the
decomposition. It has an internal structure that is invisible to the
other modules and an external interface which exports its
functionality. It can eventually be decomposed into further modules
or be directly implemented in software. The main concern of this
abstraction is reducing the complexity and moving to a more
abstract level than code. According to [21] and [32] when dealing
with large systems, system evolution is driven more by changes in
functionality than by low-level tinkering with code. Changes are
reflected by added, removed or modified modules. Therefore,
system-level evaluation should be based on modules rather than on
code. This is also consistent with the infrastructure trends of
telecommunication companies described in [33]. The trend is to use
a modular structuring which encapsulates a feature in a module
instead of distributing its functionality over the system. This
modular structure makes it easier to add, remove and manage the
functionality of the system. The case study considered in this paper
has a layered architecture. The system is organized hierarchically
with each layer providing service to the layer above. Each layer
hides its implementation from the higher layers.

Relationships between modules are related to the method used
to decompose the system. The structure obtained by the
decomposition depends on the method used: "part of"
decomposition produces a hierarchical structure, "uses"
decomposition produces more complicated graphs. The case study
has a layered architecture, so modules can import only blocks from
lower layers. This decomposition produces a hierarchical structure.
Measuring software attributes

The decomposition step extracts the structural information from
the source code. Other useful information can be extracted. The
theory of software measurement describes the technologies for

 2

mapping software code to a set of attributes. The objective is to
create a concise and abstract representation of a piece of source code
in terms of a set of attributes. The attributes can embody some
characteristics of quality or software property that are under
investigation. For example, we can calculate the size in terms of
lines of code, complexity using complexity measures, age in terms
of version numbers, error proneness in terms of defect density and
other measures [10]. A set of attributes can be measured for each
module. These attributes are a representation of the code that is
associated with the module; they are its properties. In this way, each
element of the structure owns a set of properties whose values are
the ones of attributes measured on its associated source code.

This process of abstraction is exemplified in Fig. 1. The abstract
representation constitutes three modules interconnected according to
a decomposition model. Each module has three properties: the
name, the number of lines of code and the version of the module.

Fig. 1 The abstraction process

3.2 The Software Release History
The innovative part of our approach, called Software Release

History, is the use of the history of the system to evaluate it. The
historical evolution of a software system is determined by release
deliveries: each new release incorporates changes to the code of the
system. Software Release History tracks this evolution.

According to the abstract model just developed, system
evolution is detected by modifications in two elements: structure
and software attributes. The system structure is modified when
modules are added to or removed from the system or the
relationship among modules is changed. The software attributes can
change when the underlying code is modified. For example, if a new
module is added to implement a new functionality, the new structure
is obtained from the old one plus the new module. As another
example, if the code of a module is re-written, the module's version
number increases. Therefore, the abstract representation modifies its
information as the system evolves. For each system release an
abstract representation can be extracted from the source code.

The Software Release History captures the evolution of the
abstract representation. It is composed of three entities:
- Time: this coordinate is expressed in release sequence number,

RSN. The advantages are that the system is defined precisely
at times of releases and that the release intervals correspond to
well-defined units in the system life-history.

- Structure: the system is decomposed into modules and
relationships according to the abstract model.

- Attributes: a set of attributes, such as version number, size,
complexity, defect density are measured on the source code
associated with system modules.

The time line is discrete and a value of it identifies a unique release
of the system. For each element of the time line the abstract
representation (structure and values of attributes) is extracted from
the code. The information is stored in a database. The database is
called the Software Release Database.

4 THE CASE STUDY
We have developed the Software Release History approach for

the analysis of large evolving systems. The technique was
developed in conjunction with a representative case study. The case
study examined is a product family of Telecommunication
Switching Systems (TSS). The evaluation of the present work only
concerns the software of the system. The system is mainly
developed using the C programming language.

The system was under continuous development and several re-
designs of the software and hardware have been done. The first
delivery of the TSS in 1980 had 100,000 LOC (lines of code). In
1990 a typical TSS product consists of 3 MLOC (million lines of
code). Today the size is about 13 MLOC. These figures already
show some of the issues of such huge systems.

The next sections describe how the available data of the case
study are mapped to the three entities of the software release history.

4.1 Time
The system releases are progressively numbered with increasing

values. This numeration is called release sequence number, RSN.
The case study contains twenty different releases which represent
releases over 21 months. Eight of these releases are major releases
(releases 1 through 6 and releases 19 and 20) and twelve are minor
releases (releases 7 through 18). The time intervals between major
releases (1-3 months) are normally larger than between minor
releases (15-30 days).

4.2 The structure
The software architecture is organized as a layered system.

Layered systems are organized hierarchically with each layer
providing service to the layer above it. The structure is a tree
hierarchy with four levels. The top level is the system level. It is
based on the subsystem level (second level), module level (third
level) and program level (fourth level).

Each level consists of one or more elements. Each element of a
certain level is connected to one element of the higher level. The
elements in each level are named corresponding to the names of the
levels: subsystems, modules and programs1.

Programs are the smallest logical unit of this structure. They
represent the algorithms. The algorithms of a program are
implemented in source files. So one or more source files are
associated with a program element. The tree hierarchy limits the
visibility of the algorithms contained in the program level.

4.3 Attributes
The case study is based on version numbers as a representative

of software attributes. The numeration is based on the RSN.

1 To avoid confusion the names of the structure elements of the
case study are written in italic: subsystem, modules and program. When
they are written in normal characters they refer to the usual meaning of
those words.

Source A

Source B

Source C

Module B
Size: 800
Ver: 2.0

Decomposition

Low

Module A
Size: 1200

Ver: 1.0

 Level of abstraction High

Source code

Measuremen

Module C
Size: 3000

Ver: 2.1

 3

The version number of this system element is the RSN of the
release to which it belongs.

Subsystems and modules do not have any numeration because
they are abstract entities. Their version numbers are the same as the
system element to which they belong.

The version number of each program element is the RSN of the
release where it had the latest change. For example, program A
changes its implementation at releases 1, 2 and 5, so its version
numbers are the sequence < 1 2 2 2 5 5 >. In releases 2, 3 and 4 the
implementation is the same so the version number is 2 because the
last change happened in release 2. The version number can assume
also a null value. This value is used to indicate that the program
element is not present in that particular system release.

 We have adopted the same system structure for all the releases.
Such common structure is the most generic one, so that the
structures of each release can be fitted to the common one. In this
way the same structure is used for all the releases and it eases
comparisons.

The advantage of this approach is that all the elements are
numbered with the same notation that captures the essential
information of the version number: when the changes happen and
what is the implementation of the program element. In this way it is
possible to make comparisons because all the entities are measured
in the same scale. Moreover the use of a null version number allows
us storing also structural information about programs.

4.4 The Database
The data regarding the software release history are extracted

directly from the source code. During compile time preprocessors
extract and store the information in a database. For each release
stored, the database contains entries for elements at the system,
subsystem, module and program level. Two valuable information
are present: relations between various elements of the system (e.g.
module c consists of programs 1, 2, 3) and the version numbers of
the programs (e.g. program 5 has version number 2.3).

The database considered in the present work is populated with
20 releases of the software product. Each release contains 8
subsystems, 47 to 50 modules and about 1500 to 2300 programs.
The version numbers of the programs have been converted to the
number described in Section 4.3 by specific programs.

5 VISUALIZING THE SOFTWARE RELEASE
HISTORY

5.1 Overview of approach
The Software Release History is constituted of three entities:

time, structure of the system, measures of attributes. These entities
are visualized using one three-dimensional diagram (3-D diagram).
The coordinates are called x, y, and z. In a 3-D diagram the entities
are displayed in this way:
� Time: the coordinate z stores the time information. This time

coordinate is expressed in release sequence number (RSN).
� Structure: for each RSN the system has an associated structure.

The structure is displayed using 2-D or 3-D graphs and it is
spatially positioned along the coordinate z at the value of its
own RSN.

� Attributes: each diagram can display one attribute at a time.
Each structure is identified by the RSN and has its own set of
attribute values. These values are shown using colors. The

values are mapped to a color scale and so each color of the
diagram represents a value. Fig. 7 provides an example of color
scale used for the case study. Each value of RSN is mapped to
a color. For example, color black is associated with 0 which
means that a program element is not present in the system
structure; red color is associated with 1 which means that the
program element has version number 1.

3

2

Figure 2 The 3-D diagram.

Figure 2 shows a graphical representation of this approach. For
each system release (1, 2 and 3) a graph shows the structure of the
system. The graphs can be of two types, 2-D or 3-D. In the figure, a
tree structure is used as an example. Each colored block is
associated with a module of the abstract decomposition. The colors
are used to visualize a software attribute. Each color is mapped to an
attribute value through a color scale. This visual approach provides
an immediate representation of the data. Using the color scale it is
possible to relate the colors to the values, and so immediate
comparisons can be done. (Please see web site for color graphics.)

5.2 Visualizing one system release
The hierarchical structure of the software in the case study

requires the implementation of specific solutions for hierarchical
structures. 2-D and 3-D tree graphs may be used to visualize
hierarchical structures. 3-D graphs are implemented using Cone
Tree [25]. 2-D graphs use the same technologies of Cone Tree in
two dimensions. Fig. 3 shows the whole structure of one system
release of the case study. The large volume of data regarding one
release is visualized in one view. The three dimensional layout
allows the packing of more data onto the screen without overloading
it. The 3-D layout also allows navigating virtually within the system
structure. System architects or engineers who need to navigate the
system structure can take advantage of this 3-D layout. Fig. 4 shows
the details of several subsystems. By navigating through the space,
the user can focus on interesting details, choosing the best view and
can have a virtual perception of the visualized structures. Other
features are:

• Visual retrieval of data: to extract simple data (like name or
version number) the user can click with a mouse on the
element and retrieve its attributes.

• Global and local view: the whole architecture of one system
release is visualized in one view at any level of abstraction. In
this way the viewer has all the data at his/her disposal. When
something interesting or anomalous is found, the user can
zoom in on the problem without losing the context.

• Visual aid: when understanding abstract information our
minds create visual representations to simplify the process.
Visualization can provide it for the viewer and relieves his/her
mind. In this way imagination and creativity are free to
address new ideas. This is one of the advantages claimed for
information visualization.

1

y
z

RSN x

 4

• Ease of use: 3-D displays and navigation are easily
understood because they take advantage of the human's innate
perception of space. The training time for a new user can be
remarkably short [4].

5.3 Visualizing large volumes of data
3-D and 2-D graphs, even if displayed in a 3-D space, have the

limitations that they become incomprehensible when visualizing
large sets of data. Specific solutions have to be adopted for large
volumes of data. The percentage bar is a graphical object that offers
a compact representation of a group of elements. It visualizes an
attribute of the modules in terms of percentages. It is composed of a
set of colored blocks. Each block has two properties: relative size
and color. The relative size is proportional to the percentage of
modules that have the same value of the attribute. The color depends
on the value of the attribute through the color scale. The graphical
object is shown in Fig. 6. It is helpful for visualizing the attributes
of hundreds of modules. The percentages and their associated values
are grasped quickly. For quantitative comparisons size is the most
effective perceptual data encoding variable [8].

5.4 Visualizing the history
The third dimension allows us to visualize historical

information together with the system structure. The z coordinate is
expressed in RSN. For each value of RSN the associated graph is
created by extracting the data from the database and displaying it at
its own position. Fig. 5 shows 10 releases of the case study. Each
release is visualized with a 2-D tree. The tree visualizes the structure
of a subsystem of the case study. Fig. 6 shows the same data of Fig.
5 using percentage bars.

Two useful representations can be obtained by rotating and
compacting the 3-D diagram. Fig. 8 and Fig. 9 show two examples.
They visualize the attribute values of the program elements
belonging to a module element of the case study. The former figure
uses percentage bars, the latter visualizes separately each program
element (each column is a program). Such 2-D representations are
powerful tools for examining the historical information. They make
such historical information accessible to the analysts who need to
trace back the evolution of the system. The main features are:

• The whole history is visualized in a compact view so that the
viewer can compare different releases.

• The main changes in the evolution are easy to detect because
they are represented by "large" changes in color.

• The distribution of an attribute is visually perceived by region
filling and colors.

• It is possible to focus on a single release and then to move the
examination immediately on the next one without changing
context.

Examining these two pictures, useful observations can arise about
the evolution of the module. We first describe Fig. 8 and then Fig. 9

The graph of Fig. 8 visualizes the percentages of programs
which have the same attribute value. This representation documents
the events that influenced the whole module. At release 1 (first row)
all programs have the same version number, that is, the version
number 1 (red color). At release 2 (second row) 96% of programs
have version 2 (pink color) and the rest (4%) have version number 1
(red color). This means a majority of programs (96%) have changed
their implementation and therefore the module has been extensively
modified. There are several reasons that can motivate such behavior.
Motivations can be found by direct inspection of the code or of the

module's documentation. For example, the module could have been
restructured, or, to add a new functionality, programmers had to
modify many parts of it. Whatever the cause, such a view is a cause
of concern and should trigger a closer examination.

Still in Fig. 8, at release 8 the module has its last major
modification. In fact at release 8 (eighth row) the large dark green
zone shows that many programs have changed their
implementation. Then from release 8 until release 20 many of these
programs maintain their version number: for each release from
release 8 to 20 the green color zones are the biggest ones. Between
release 8 and 20 a small fraction of programs change their version
number: in Fig. 8 this is reported by the regions on the right colored
with blue, purple and dark green. The programs change at releases
9, 10, 11, 12, 14, 15, 17, 19. It is clear that the programs have
stabilized. An inspection of the module's documentation revealed
that a considerable effort has been spent between release 7 and 8 to
update a functionality of the module.

The representation of Fig. 9 visualizes separately the evolution
of each program of the module. It provides the same information of
Fig. 8 and allows studying the evolution of single elements.

To identify the small percentage of programs which do not
change at release 2, Fig. 9 has to be used. It shows that on the
second row (release 2) the first program from left and the sixth
program from right have a red color, i.e. version number 1. In this
way this representation allows identifying the outliers.

Looking at Fig. 9 it is possible to identify the small amount of
programs which do not maintain their implementation between
release 8 and release 20. In particular, there are five programs
whose behavior is anomalous. They are the second, the third, the
fifth, the seventh and the eighth program from the right. All these
programs have a common behavior: they change their
implementation at release 8, maintain it for several releases and then
they change it at later times. The modification made at release 8 is
successful for many programs. For the identified programs the
modification is not so successful because after several releases they
need other changes. Several reasons could give rise to this situation:
the modification at release 8 has not been correctly implemented or
the detected programs have particular problems and need to be
restructured. Only a direct inspection of the source code or of the
documentation can verify these hypotheses.

5.5 Observations on the case study
Fig. 10 shows all the subsystems of the case study, labeled with

letters from A to H. For each subsystem its modules are visualized
using the 2-D visualization with percentage bars. For each
subsystem the modules are numbered from left to right. The
subsystem A contains two rows of modules, the first row contains
the modules from 1 to 8, the second line the modules from 9 to 16.
Several observations can be made by examining the pictures. The
purpose is to show how the qualitative observations can be
extracted. Quantitative observations can be easily obtained by the
database. The purpose of the technique is to provide the means for
quickly examining the data.

Modules A-16, H-2, H-3 have been removed in the first system
releases. In fact for each release from 3 to 20, the percentage bar is
black. This means that all the programs of the module are absent.

In subsystem A the majority of modules is characterized by a
low growth rate. High growth rates are localized in the first releases,
after which modules reach a stable size. The sizes of the black
regions are an indication of growth rate. High changing rates can be
identified by a zone with high color changes, instead of low

 5

changing rate that are identified by plain color zones. The modules
1, 2, 5, 7, 9, 11, 13 and 14 are characterized by big plain color
regions, therefore their changing rate is quite low. Release 5 is
associated with yellow color. At release 5 modules 1, 2, 3, 4, 7, 9,
10, 11, 12 and 15 contain a large yellow zone. This means that at
release 5 many programs have been modified. This may be due to a
large modification of the whole subsystem. Module 5 is
characterized by the fact that the majority of its programs are added
at release 3 (orange zone) and then many of them do not change
their version number any more (the big orange zone extends until
the last release). This reveals that the programmers made
appropriate choices when they added the programs because these
programs do not require any modifications throughout 20 releases.

Subsystem D contains modules with the highest changing rate.
Almost all programs of modules 1 and 2 change their version
number in each release. This fact is shown by the horizontal colored
lines which span almost all the module size. Module 3 has a high
growth rate but the changing rate is modest. New programs are
added and many of them are maintained for all the releases. The
anomalous behavior of this module has also been detected in the
work of Gall et al. using statistical analysis [11]. This subsystem is a
candidate for reengineering.

In subsystem C module 1 has a stable size and it is mainly
constituted of programs with version number 1 (big red zone).
Module 2 increases in size at release 13 (dark purple color) when
many programs are added. New programs are added with version
number 13 and then many of them maintain it until release 20. In
fact, many of these added programs do not change their version
number. In all the modules we can identify a set of programs which
never change their implementation (red vertical line on the left).
This means that they are stable for all the releases.

Fig. 10 is also useful to detect relationships between modules of
different subsystems. We can provide some examples.

Modules A-5, A-7, B-9, C-2, F-2 and G-3 are characterized by a
considerable change that is maintained for many releases. This is
perceived visually by the large monochromatic zones that start at a
specific release.

Modules D-3, F-2, F-4 and F-6 have a high growth rate for all
the releases. In fact the black region is constantly diminishing.

In modules A-1, A-2, B-3, B-4, B-5, B-7, B-8, B-10, C-1, C-3,
E-1 and G-2 we can identify a common visual pattern. The pattern is
made of a large red zone on the left and of multi-colored zones on
the right. This pattern means that the modules are composed of a
considerable number of programs at release 1 and of programs
which often change their implementation, i.e. the modules contain a
stable group of programs at release 1 and a variable group which are
changing to implement the new functionality.

Such visual pattern can be extended to include modules A-5, A-
7, A-8, A-13, A-14, B-9, B-10, F-7, G-1, G-5, G-6. This pattern is
made of monochromatic colored bars on the left and of multi-
colored zones on the right. The meaning behind this pattern is that
these modules contain stable programs implemented in the first
releases and variable programs which are often changing their
implementation.

6 EVALUATION OF THE APPROACH
We have presented our attempt to use three-dimensional and

color visualization of software release histories. For such a novel
approach, it is difficult to give a definitive assessment of the
technique. Certainly, the engineers and managers who viewed the

visualizations were able to quickly grasp the main ideas and patterns
in the software evolution. But there are also a number of questions
regarding the generality of the approach and in how well we have
implemented the approach. In the absence of quantitative
assessments, in this section we provide some subjective evaluations.
We first describe and summarize the main advantages of the visual
approach to software history analysis and then discuss some of the
difficulties and challenges in the approach.

6.1 Advantages

6.1.1 Visualization
The main advantage of the approach is that it provides

simultaneous visualization of the three entities (structure, attribute
and time) in one view.

The abstract structure of the system at a generic release can be
visualized with both 3-D and 2-D graphs. The graphical notation
adopted (cubes and spheres for modules and lines for relationships)
is intuitive. The graphical representation adopted for the structures
is close to the mental projections that humans' mind makes of
abstract structures. For example, the hierarchical structure of the
case study is visualized with trees that are the natural way we think
of a hierarchical structure. The process of thinking of abstract
information through mental images is alleviated because the process
is carried out automatically by a graphical system of visualization.

Each module of the structure is associated with a part of the
software system. From a piece of source code several measures can
be calculated such as version number, size, complexity. These
values are the properties of the module. The approach allows us to
visualize with colors the attribute values of modules.

The third dimension is used as time coordinate to display the
historical evolution of system structure and attributes of modules.

6.1.2 3-D visualization
The visual representation uses a three dimensional display. The

main advantage of the third dimension is that it is possible to pack
more information in one view. Other advantages of the third
dimension are:

• Three coordinates allow us to visualize both system structure
and historical evolution of the system. The viewer can
perceive both structural and historical information looking at
one view. The viewer can also select the best perspective
when focusing only on one information.

• Graphical objects have a three dimensional layout. The visual
effect is pleasing for human viewers. Rendering, shading and
3-D perspectives are the technologies that can simulate the
reality to which our mind is accustomed. These graphical
technologies can produce representations that are more
natural to the human eye.

• The viewer can navigate virtually in the graphical
representation. This allows choosing the best view of interest
for the data instead of requesting the data from the database or
changing the parameters of the graphs. New representations
can be easily obtained just by rotating, zooming, projecting or
moving the graph.

6.1.3 Coloring by measures
A module's attribute captures essential information about its

associated source code. Visualizing how the attribute is distributed
over the modules is useful for identifying anomalous behaviors or
abnormal values of the attribute. The approach uses colors for

 6

visualizing such distribution. The basic idea is coloring the system
elements by their attribute's values. This is achieved by mapping the
range of values to a color scale. The advantages of this approach are
summarized below:

• Attribute values are visualized together with system structure.
In this way the values are in the same context of the elements
to which they belong.

• Numerical values are mapped to colors, so that the process of
comparing the data changes from being a cognitive task (i.e.
numerical comparison) to being a perceptive task (i.e. visual
comparison). Changes, commonalties, differences and
patterns can be visually detected rather quickly.

6.1.4 Compact representation
In visualizing the attribute values of a large set of modules, the

main problem is how to give an informative representation that
would visualize large amount of details in a comprehensible
manner. Our approach uses percentage bars. These graphical objects
provide a visual representation of percentages instead of values. In
this way it is possible to visualize a set of values of arbitrary size in
a standard layout without being overwhelmed by the volume of data
[1].

6.1.5 Visualization of History
Our approach allows us to visualize and compare multiple

system releases. Two representations that are useful for studying the
historical evolution are available. Representations that use
percentage bars report the major modifications that influenced the
history of a module and help discover anomalous behaviors.
Representations that do not use percentage bars visualize the
historical evolution of each module's components and expose the
outliers precisely.

6.1.6 3-D navigation
Instead of accessing the database directly to look for the data

and to extract them, it is possible to navigate through its
visualization and to have access to the desired data immediately. We
have developed a visualization system that supports both
functionality. The viewer can navigate the 3-D space for examining
the structure and can retrieve the data by pointing the mouse on an
object and clicking on it. For example, Fig. 3 visualizes the whole
structure of one system release that is contained in the database. The
lowest level consists of almost 2300 elements. The viewer has a
global view of all the database in just one picture. Then he/she can
focus on a particular subsystem or can extract the values of the
modules just by pointing.

6.2 Challenges
Applying information visualization techniques to the software

engineering domain is a challenging task. We set out to evaluate the
use of the third dimension and color in this visualization. Therefore,
one way to evaluate the success of our approach is to ask whether
tables or simple 2D charts wouldn't be able to present the same
information, even more clearly.

3-D layouts have been investigated in the software engineering
community but they are considered with suspicion by tool vendors.
Our experience indeed supports such skepticism in the sense that 3-
D layouts can be ineffective in displaying complex graphs. By
keeping the complexity of the graphs low, however, 3-D layouts can
be used to encode more information than 2-D layouts. Indeed, in the
3-D diagram we have developed, historical information and

architectural views are put together. A 2-D layout would have
difficulty encoding both these views. This motivated us to use the 3-
D layout.

The use of colors is the second issue we investigated. As before,
the question is whether a monochromatic color scale wouldn't
provide the same results or if the cost of using color is worthwhile.
In our experience, after a short period of familiarization with the
types of visualizations, users find color plates to be easy to use and
much more intuitive then textual tables.

One of the challenges in our scheme is the choice of the color
scale. Our purpose was to maximize the number of distinct colors
along the scale. We did not find a specific recipe in the literature to
solve this problem [22] . Therefore, we decided to use the standard
rainbow scale. The rainbow scale covers all the hues of the rainbow
at different intensity. However, this scale didn't satisfy our purpose
and we decided to manually customize the scale for our 21 color
scale. This is a specific solution for our case study where the
releases are limited to 20. The color scale could be a limitation for
the adoption of this technique to other cases.

7 CONCLUSIONS AND FUTURE WORK
The evolution history of large software systems contains

valuable information for software engineers and managers. We have
developed a visual representation that can make this information
concrete and applied it to the evolution of a TSS system.

Our work shows that information visualization technologies can
be applied with relative ease to the analysis of software evolution
and to uncover valuable information. We have only scratched the
surface in this area. We believe that these kinds of analyses can be
of significant help in software engineering management. A fruitful
area of research is to develop new visualization techniques and
supporting analysis.

The 3-D visualization allows the viewer to visually perceive the
abstract information of a software system. Navigation makes it
possible to change the viewpoint and to quickly extract the data.
Such visualization has several potential applications. For example, it
may be used as a user-interface for a software configuration system
in which the user navigates the visual space in order to find, query,
or open the desired module or release.

The 2-D color maps are a powerful instrument for examining
the historical evolution of the software systems. Colors can
effectively highlight the main events of the system evolution and
can clearly reveal unstable areas of the system as regions of many
color changes (because the same color means that the
implementation does not change).

Visualization appears to be a good solution for extracting
hidden information in large software databases. Software companies
store thousands of documents about their applications and are
unable to extract useful advice from them. Providing these databases
with appropriate visual interfaces, software engineers can get more
insights about their applications by bringing software "to life."

Below, we list some areas of possible future work:
• Extension of the database of the case study, in order to

include more detailed information about the modules. For
each module it could include its size in LOC, defect
density and complexity measures. Then, by setting up the
mapping of the color scale, the visual representation can
be used also to visualize these attributes.

• Use of nonhierarchical structures. The case study has a
peculiar hierarchical structure. For this reason, the present

 7

work has adopted only tree graphs (2-D and 3-D). Future
work could be directed to investigating other structural
representations that could be used for non-hierarchical
architectures.

• Verification of observations about the case study that were
produced based on the visualizations. These observations
could be verified by using additional information such as
bug reports, enhancement requests, design changes, or by
direct inspection of the source code.

• Automatic detection of change patterns. A related work
[12] addressed the problem of identifying module
dependencies by detecting common patterns in the
Software Release History. Future work could investigate
the possibility of automating the task of detecting patterns.
In particular, two types of capability should be supported:
visualization of known patterns and automated detection of
patterns requested by users.

8 REFERENCES
[1] M. J. Baker and S. G. Eick, Visualizing Software Systems,

AT&T Bell Laboratories, 1994.
[2] M. H. Brown and A. M. Najork, Algorithm Animation Using

3D Interactive Graphics, Proceedings of the 1993 ACM
Symposium on User Interface Software and Technology, Nov.
1993, pp. 93-100.

[3] J. Carrière and R. Kazman, Interacting with Huge Hierarchies:
Beyond Cone Trees, Proceedings of Information Visualization
'95, Atlanta, Georgia, Oct, 1995, pp. 74-81.

[4] H. Chu and H. Koike, How does 3D Visualization Work in
Software Engineering ?: Empirical Study of a 3D
Version/Module Visualization System, International
Conference Software Engineering 98 (ICSE 98), 1998.

[5] S. G. Eick, J. L. Steffen and E. E. Sumner Jr, Seesoft - A Tool
For Visualizing Line Oriented Software Statistics, IEEE
Transactions on Software Engineering, Vol. 18, No. 11, Nov
1992, pp. 957-968.

[6] S. G. Eick and D. E. Fyock, Visualizing corporate data, AT&T
Technical Journal, January/February 1996, pp. 74-76.

[7] Thomas A. Ball and Stephen G. Eick. Software visualization in
the large, IEEE Computer, April 1996, pp. 33-43.

[8] S. G. Eick. Engineering perceptually effective visualizations for
abstract data, Scientific Visualization Overviews,
Methodologies and Techniques. IEEE Computer Science Press,
February 1997, pp. 191-210.

[9] L. Feijs and R. de Jong, 3D Visualization of Software
Architectures, Communications of the ACM, Vol. 41, No. 12,
December, 1998, pp. 73-78.

[10] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous
& Pratical Approach, International Thomson Computer Press,
Second Edition, 1996

[11] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth, Software
evolution observations based on product release history,
International Conference on Software maintenance (ICSM '97),
Bari, Italy, pp. 160-166, September 1997.

[12] H. Gall, K. Hajek, M. Jazayeri, Detection of Logical Coupling
Based on Product Release History, International Conference on
Software maintenance (ICSM '98), Washington, DC, 1998.

[13] Gershon, Nahum, S. G. Eick, Visualization's new track: making
sense of information, IEEE Spectrum, 32(11), Nov. 1995, pp.
38-56.

[14] B. Johnson, Visualizing Hierarchical and Categorical Data,
Ph.D. Thesis, Department of Computer Science, University of
Maryland, 1993.

[15] D. A. Keim, Databases and Visualization, Tutorial, Proceedings
of ACM SIGMOD International Conference. On Management of
Data, Montreal, Canada, 1996 URL: http://www.informatik.uni-
muenchen.de/~keim.

[16] D. A. Keim, Visual Techniques for Exploring Databases,
Invited Tutorial, International Conference on Knowledge
Discovery in Databases (KDD'97), Newport Beach, CA, 1997,
URL: http://www.informatik.uni-muenchen.de/~keim.

[17] D. A. Keim, Visual Data Mining, Tutorial, International
Conference on Very Large Databases (VLDB'97), Athens,
Greece, 1997 URL: http://www.informatik.uni-
muenchen.de/~keim.

[18] Koike H., The role of another spatial dimension in software
visualization, ACM Transactions on Information Systems, 11(3),
July 1993, pp. 266-286.

[19] H. Koike, Hirotaka Yoshihara: Fractal Approaches for
Visualizing Huge Hierarchies, Proceedings of the 1993 IEEE
Symposium on Visual Languages (VL'93), 1993, pp.55-60.

[20] Hideki Koike, Hui-Chu Chu: VRCS: Integrating Version
Control and Module Management using Interactive Three-
Dimensional Graphics, Proceedings of 1997 IEEE Symposium
on Visual Languages (VL'97), 1997, pp.170-175.

[21] Lehman M.M. and Belady L.A., Program evolution, Academic
Press, London and New York, 1985.

[22] H. Levkowitz and G. T. Herman, Color Scales for Image Data,
IEEE Computer Graphics and Applications, Vol. 12 1, 1992,
pp. 72-80.

[23] Parnas D. L., Clements P. C. and Weiss D. M., The Modular
Structure of Complex Systems, IEEE Transactions on Software
Engineering, March 1985, Vol. SE-11 No. 3, pp. 259-266, also
published in Proceeding of 7th International Conference on
Software Engineering, March 1984, pp. 408-417.

[24] Parnas D.L., Software Aging, Proceeding of ICSE 16, Sorento,
Italy, May 1994, pp.279-287.

[25] G. G. Robertson, J. M. Mackinlay and S. K. Card, Cone Trees:
Animated 3D Visualizations of Hierarchical Information,
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '91), ACM Press, 1991, pp. 189-194.

[26] A. Sarma, Introduction to SDL-92, Computer Networks and
ISDN Systems, Elservier Science Publishers, Vol. 28, No. 12,
1996, pp. 1602-1615.

[27] S. Card, J. MacKinlay, B. Shneiderman, Readings in
Information Visualization : Using Vision to Think, Morgan
Kaufman Publishers, 1999.

[28] B. Shneiderman, Tree Visualization with Treemaps: A 2D
Space Filling Approach, ACM Transactions on Graphics, Vol.
11, No. 1, 1992, pp. 92-99.

[29] J. T. Stasko and J. F. Wehrli, Three-Dimensional Computation
Visualization, Proceedings of the 1993 Symposium on Visual
Languages, Aug. 1993, pp. 100-107.

[30] J. T. Stasko, J. B. Domingue, M. H. Brown and B. A.
Price, Software Visualization, MIT Press, 1998.

[32] Turski W. M., Reference Model for Smooth Growth of
Software Systems, IEEE Transactions on Software Engineering,
Vol. 22, No. 8, Aug. 1996, pp. 599-600.

[33] F. J. van der Linden and Müller J. K., Creating Architecture
with Building Blocks, IEEE Software, Nov. 1995, pp. 51-60

[34] C. Ware, D. Hui and G. Franck, Visualizing Object Oriented
Software in Three Dimensions, Conference Proceedings of
CASCON' 93, Toronto, Ontario, Canada, October, 1993, pp.
612-620.

[34] C. Ware and G. Franck, Viewing a Graph in a Virtual Reality
Display is Three Times as Good as 2D Diagram, Proceedings of
the 10th IEEE Symposium on Visual Languages, 1994, pp. 182-
183.

 8

http://www.informatik.uni-muenchen.de/~keim
http://www.informatik.uni-muenchen.de/~keim
http://www.informatik.uni-muenchen.de/~keim
http://www.informatik.uni-muenchen.de/~keim
http://www.informatik.uni-muenchen.de/~keim

International Conference on Software Maintenance (ICSM '99), Aug 30-Sep 3, Oxford, England, 1999.

Fig. 3 3-D visualization of the structure of the case study.

Fig. 4 Navigation: zooming on subsystems

Fig. 5 Visualizing the history.

Fig. 6 Visualizing the history using percentage bars
0 RSN percentages RSN programs
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18 18 18
19 19 19

20

20

20

Fig. 7 Color Scale Fig. 8 History with percentages. Fig. 9 History displaying program elements.

RSN

RSN

A

B

C

D

E

F

G

H

Fig. 10 2-D visualization of the case study (RSN as in Fig. 8).

 10

	Abstract
	Introduction
	Related Work
	The Software Release History
	System abstraction
	System decomposition
	Measuring software attributes

	The Software Release History

	The Case Study
	Time
	The structure
	Attributes
	The Database

	Visualizing the Software Release History
	Overview of approach
	Visualizing one system release
	Visualizing large volumes of data
	Visualizing the history
	Observations on the case study

	Evaluation of the approach
	Advantages
	Visualization
	3-D visualization
	Coloring by measures
	Compact representation
	Visualization of History
	3-D navigation

	Challenges

	Conclusions and Future Work
	References

