
Joint EUROGRAPHICS - IEEE TCCG Symposium on Visualization (VisSym ’99), May 26-28,
Vienna, Austria, 1999

 Application of Information Visualization to the
Analysis of Software Release History

Harald Gall1, Mehdi Jazayeri1, Claudio Riva2

1 Distributed Systems Group, Technical University of Vienna,
Argentinierstrasse 8/184-1, A-1040 Wien, Austria

{gall, jazayeri}@infosys.tuwien.ac.at
2 Nokia Research Center, Software Technology Laboratory,

P.O. Box 45, FIN-00211 Helsinki, Finland
claudio.riva@research.nokia.com

Abstract. We present our experiences in applying information visualization
techniques to the study of the evolution of a large telecommunication software
system. We used the third dimension to portray the temporal evolution of the
system and color to display software attributes. The visualization was surpris-
ingly successful in uncovering interesting and useful patterns in the system’s
evolution. To do the visualization, we built a tool that combines off-the-shelf
components: a database for storing software release data, VRML for displaying
and navigating three-dimensional data, and a web browser for the user-interface.
The tool is published on the web. The tool is capable of providing effective
views of data that are always kept by software development organizations but
are often ignored. Information visualization makes it possible to exploit such
historical data about past projects to help in the planning stages of future soft-
ware projects.

Keywords: software release history, third dimension, color, World Wide Web

1. Introduction

Large software systems undergo significant evolution throughout their lifetimes. Of-
ten, the structure of a system after a few releases is very different from the structure it
had at its initial introduction. Such drastic changes in the structure are due to new
functional requirements on the system after it has been released, improper initial de-
sign that does not accommodate enhancements easily, or inadequate performance that
can only be ameliorated by major restructuring. The history of a software system’s
evolution contains information that can be used by managers and system developers in
both understanding the reasons for the changes in the current system and in guiding
the development of future systems. Unfortunately, such information is only passed on
through informal anecdotes without any real understanding. Even though most com-
panies collect lots of data about system releases, such information is rarely used in

2

future planning. The main reasons for not using the information are the huge volume
of data and the difficulty in drawing any coherent conclusions from the data quickly.

This paper reports our experience in trying to make sense of a database of release
histories of a telecommunication system consisting of about 10 million lines of code
(10 mloc). The company had developed a custom database to maintain data about
system releases. The database provided basic tools that an experienced engineer could
use to pose queries about the structure of the software. Our goal in the project was to
find general ways to discover patterns in the evolution of the software. We identified
some key metrics to measure and initially used simple two-dimensional graphs to plot
them [8]. Already, these graphs showed significant trends in the system’s evolution
that were not known to the developers. We then applied three-dimensional graphics
and color to visualize further information about the release histories. The techniques
were useful in quickly summarizing the large volume of data in the release database
[11]. We believe that the techniques are generally applicable to the analysis of soft-
ware release histories and can be a valuable tool for software engineers and managers
in the planning phases of system development and enhancement. Our general conclu-
sion is that three-dimensional information visualization is readily applicable to the
analysis of release histories and should become a standard tool in the software man-
ager’s toolbox. To our knowledge, no such techniques are currently used or are even
being considered in software development organizations.

This work was supported by the European Commission within the ESPRIT Frame-
work IV project ARES (Architectural Reasoning for Embedded Systems). The tech-
nique was developed in conjunction with an industrial case study as part of the project
ARES.

2. Related Work

Information visualization is currently being explored to examine and comprehend
masses of data regarding software systems. Most software visualization work has
concentrated on code-level visualization or on performance visualization. Our focus is
on structural and architectural level of large software systems. Several papers have
addressed this area.

Eick et al. have developed a set of tools for visualizing several classes of data [5]
[2] [7]. In particular, SeeSys [1] is a visualization system for displaying the statistics
associated with code. Johnson and Schneiderman concentrate on visualizing hierarchi-
cal data using Treemaps [18] [12]. The approach uses the screen-filling method for
displaying the attribute values of hierarchy components. The color of the region can
provide an additional attribute.

Software visualization using three dimensional display is a current research area.
Koike developed a 3-D framework to visualize the execution of two paral-
lel/concurrent computer systems [14]. Koike et al. also proposed a 3-D framework for
both version control and module management [13] [4]. Ware et al. investigate how to
visualize object oriented software in three dimensions [19].

3

3-D graphics for displaying hierarchical structures have been development by Card,
Mackinlay and Robertson [17]. Their work provides ConeTree which is a technique
for displaying hierarchical objects in 3-D space. Improvements of ConeTree are de-
scribed by Carrière and Kazman [3] and by Koike [15].

3. Visualizing the Software Release History

The case study’s architecture is organized as a layered system. The structure is a tree
hierarchy with four levels. The top level is the system level. It is based on the subsys-
tem level (second level), module level (third level) and program level (fourth level).
Each level consists of one or more elements. The elements in each level are named
corresponding to the names of the levels: subsystems, modules, programs.

Table 1 shows an example of the software release history. Each row represents the
version numbers of a program element. The first and second column (labeled Sub and
Mod) contain respectively the subsystem and module to which the program belongs.
The third column (labeled Prog) contains the name of the program. The columns la-
beled from 1 to 20 represent the twenty system releases. The version number of each
element is the RSN of the release where it had the latest change. For example, if a
program changes its implementation at release 1, 2 and 5 then its version numbers are
the sequence < 1 2 2 2 5 5>.

The database is populated with 20 releases of the software product. Each release
contains 8 subsystems, 47 to 50 modules and 1500 to 2300 programs.

Table 1. An example of the database in which the software release history is stored.

Sub Mod Prog 1 2 3 4 5 6 … 20
Sub1 Mod A Prog A 1 2 2 2 5 5 … 18
Sub1 Mod A Prog B 0 2 3 4 5 0 … 20

Following the success of the 2-dimensional graphs in the previous study [9], we de-
cided to explore the application of three-dimensional visual representations for exam-
ining the software release history. The purpose of the representation is to present the
data contained in the evolution history in a more comprehensible way.

The software release history consists of three entities: time, system structure and
version numbers. These entities are visualized in one three-dimensional diagram. The
coordinates are called x, y, z. The coordinate z stores the time information. This coor-
dinate is expressed in release sequence number (RSN). The system structure is dis-
played by 2-D or 3-D graphs. The graph is spatially positioned along the coordinate z
at the value of its own RSN. Version numbers are shown using colors. Colors are
associated with version numbers through a color scale. The structure elements are
painted according to their own version number. Fig. 9 provides an example of color
scale. In this way, each color represents an attribute value.

Four 3-D graphical objects are used to visualize the abstract elements of the system
structure: cubes, spheres, lines and bars. The composition of these graphical objects

4

represents a graph and serves to visualize the system structure of one release. Cubes
represent modules of the system structure (i.e. subsystems, modules and programs).
The color of the cube denotes its version number. A sphere represents the topmost
module of the system structure (i.e. system). The color denotes the release sequence
number (RSN) of the system structure. A line represents the “contains” relationship
between two modules. A percentage bar is a graphical object that offers a compact
representation of a group of elements. It is composed of a set of colored blocks. Each
block has two properties: relative size and color. The relative size is proportional to
the percentage of modules that have the same version number. The color depends on
the version number through the color scale. For comparative analysis, size is the most
effective perceptual data-encoding variable [6].

Section 6.1 presents examples of three-dimensional visualization. Section 6.2
shows the use of 3-D diagrams for examining the historical evolution. Section 6.3
presents 2-D representations obtained projecting the three-dimensional graph.

3.1 3-D Visualization of structure
The case study has a tree hierarchical structure. A tree hierarchy can be visualized by
2-D and 3-D tree graphs. 3-D graphs are implemented using the Cone Tree technology
[17]. 2-D graphs use the same Cone Tree technology in two dimensions. Fig. 7 shows
the whole structure of one system release of the case study. The whole structure of the
system is visualized in one view. The 3-D layout allows the viewer to navigate the
system structure. Fig. 8 is a zoom on one subsystem.

3.2 3-D Visualization of historical evolution
The main purpose of our approach is to use 3-D diagrams to examine the historical
evolution of the system structure. Three-dimensional diagrams help to visualize both
historical and structural information. The third coordinate is expressed in RSN. For
each value of RSN the associated system structure is visualized by one 2-D tree graph.
Fig. 1 shows an example. The 3-D diagram represents 10 releases of one of the sub-
systems. For each release, the structure of one subsystem is visualized. The structure
contains all its programs and modules. In Fig. 1 the program elements are visualized
by percentage bars. In Fig. 2 the same subsystem is visualized without percentage bars.
In this way, program elements are distinctly visible.

3.3 2-D Visualization
2-D visualizations can be obtained by projecting the 3-D diagram onto 2-D space. Fig.
2 shows how to make a simple projection by compacting and rotating the diagram.
The picture obtained by the projection reveals a concise and informative representa-
tion of system evolution. Fig. 3, Fig. 4, Fig. 5 and Fig. 6 contain examples obtained in
this way. Each picture visualizes the evolution of one module element through the
percentage bars (RSN is vertically directed from up to down like in Fig. 6). Each row
is associated with a system release. For each system release (from 1 to 20), the per-
centage bars are displayed. The percentage bars show with the same color the percent-
age of modules that have the same version number. This representation highlights the

5

critical times—when major changes seem to have happened—in the evolution of the
whole module.

Fig. 1. Visualizing the history Fig. 2. Rotating the 3-D graph

4. Visualizing to understand

We applied the graphical representation to the examination of the case study. This
section presents the results and the advantages we achieved by visualizing the data
contained in the database. A more detailed description of the results, of interest to
software engineers, can be found in [11][16].

3-D Layout
Three coordinates allow to visualize both system structure and historical evolution of
the system. The viewer can perceive both structural and historical information looking
at one view. Most important, the viewer can view the changing system structure over
time. This important view never comes out in software projects. The viewer can also
navigate into the representation to find the best perspective for looking at the data. The
advantages are summarized below:
− Visual perception of the structure: in understanding abstract information human

minds create visual representations to simplify the process. Visualization can pro-
vide these representations for the viewer and relieves his/her mind. In this way
imagination and creativity are free to address new ideas. Moreover, three-
dimensional layout, rendering and shading is pleasant for humans because they can
simulate the reality to which our mind is naturally accustomed.

− Visual retrieval of data: the visualization system we have developed allows the user
to click on an element to retrieve its properties. For example, clicking on a program
element the user can extract its name and version number. This is faster and more
attractive that setting up a textual query and submitting it to the database. 3-D lay-
out combined with this functionality allows navigating the system structure and
quickly retrieving the information stored in the database.

− 3-D Navigation: the user can virtually navigate the 3-D graphical space for exam-
ining the system structure. Users can choose the best point of view to concentrate

RSN

6

on specific data sets. New representations can be easily obtained by just rotating,
zooming, projecting or moving the graph.

Observations on the historical evolution
The 2-D representations make evident some useful trends in the historical evolution of
the modules. As and example, we examine the 2-D representation in Fig. 6. This view
can be obtained as a projection of the 3-d representation of Fig. 2. It visualizes the
evolution of program elements belonging to a module. At release 1 (first row) all
programs have the same version number 1 (red color). At release 2 (second row) 96%
of programs have version 2 (pink color) and the rest (4%) have version number 1 (red
color). This means that a majority of programs (96%) changed their implementation
and therefore the module has been extensively modified. The motivation for such a big
modification may be found by direct inspection of the code or module’s documenta-
tion. Whatever the reason, such a view is a cause of concern and should trigger a
closer examination.

Still in Fig. 6, at release 8 the module has its last major modification. In fact at re-
lease 8 (eighth row) the large dark green zone shows that many programs have
changed their implementation. Then from release 8 until release 20 many of these
programs maintain their version number: for each release from release 8 to 20 the
green color zones are the biggest ones. Between release 8 and 20 a small fraction of
programs change their version number: in Fig. 6 this is reported by the regions on the
right colored with blue, purple and dark green. The programs change at releases 9, 10,
11, 12, 14, 15, 17, 19. It is clear that the programs have stabilized.

Changing rates
Changes of version number are visualized as changes in colors. This allows a qualita-
tive and intuitive indication of the changing rates. High changing rates are identified
by regions where colors change very quickly. Low changing rates are identified by
regions with plain color. In Fig. 3, the first two modules have very high changing
rates, almost all the programs change their version number every release. This
anomalous behavior of the module was already detected with the statistical analysis
[9]. In Fig. 4, the third module has very low changing rates, only at release 19 and 20
some programs change their version.

Growing rates
In visualizing the program elements, we decided to use a black color to represent
those elements that have been removed by the module or that have not been imple-
mented yet. The system has a common structure in all the releases, and the black col-
ored elements are elements not present in a particular release. This visualizes the
growing rate of the module in terms of amount of program elements. In fact, the size
of the black region is associated with the amount of not-present programs. The modi-
fication in size of this region is an indication of the growing rate. If the black region
diminishes with time, the module is adding programs. If the black region is not pres-
ent, it means that the module has reached its maximum size. If the black region in-
creases with time, the module is removing programs. In Fig. 3, the third module has

7

high growing rates. In Fig. 5 the eighth module on the second row has been removed
from the system.

Patterns
One advantage of visualization is that it enables and exploits the humans’ pattern
matching skills. This ability relies on the human visual system that is able to detect
regions characterized by repetitive use of the same shape, the same color, the same
filling or the same texture. Identification of patterns is needed to discover dependen-
cies and relationships between system elements. An example can be identified in Fig.
5 where all the modules of one subsystem are visualized using the 2-D.

Considering Fig. 5, we can identify three modules that have the same color filling.
They are the last module on the right of the first row, the fifth and the sixth modules
on the second row. The common attribute is that their representations have a large
region, filled with the same pink color. This region begins at release 2 and extends
until release 20. This means that for each module many programs have the same ver-
sion number 2 (pink color) and these modules don't change in any of the releases. This
observation could lead to identify relationships or commonalties among the programs
or could lead to identify more generally that the programs of different modules have
the same behavior.

Comparisons
The visual representation allows the user to make comparisons between different data
sets:
− Comparisons among modules: 2-D graphs and 3-D graphs allow to visualize the

structure of the system. With this representation the viewer can navigate through
the data to compare the modules of the system. Different views of the same con-
figuration of modules can make such comparisons easier. Comparing colors the
viewer automatically makes comparisons of values.

− Comparisons of different measures: a limitation of the case study is that it contains
data only about version numbers. Therefore, it is not possible to investigate differ-
ent measures. The idea is that by comparing the same modules visualized with dif-
ferent attributes, it should be possible to identify commonalties or differences.

− Comparisons of different releases: the historical (temporal) evolution of a module
can be visualized in a compact form that shows the changes of its programs. Such
view allows the comparison of the same programs in different releases and the
historical evolution of different modules.

5. Visualization on the web

To support the 3-D representations reported in this work, we have developed a visuali-
zation tool called 3DSoftVis. The tool consists of three components: a database, a 3-D
visualization engine and the graphical user interface. The database contains the data
regarding the evolution of a software system. The 3-D visualization engine transforms

8

the data extracted from the database into 3-D models. The user interface presents the
graphs to the user through multiple windows and allows the viewer to customize the
views interactively.

The tool has been developed for the World Wide Web platform using web compo-
nents such as Java, VRML (Virtual Reality Modeling Language), JDBC and HTML.
The platform-independence technologies which compose the system allow to publish
it on the web [20], making it available to any user with access to the network. The
major features of 3DSoftVis are summarized below. A more detailed description can
be found in [10].
• World Wide Web Application: the web architecture makes the tool accessible from

the network. The application and the database reside on a remote server and they
can be easily upgraded by developers. On the client side 3DSoftVis requires a
minimal configuration and relieves users from installation problems.

• Graphical engine based on VRML: VRML is an easy solution for developing 3-D
graphical tools. We are not 3-D graphical experts and the choice of VRML simpli-
fied considerably the implementation of the graphical engine. VRML is also a stan-
dard web component that can be easily integrated in a web application.

• Collaborative environment: data and that application for their analysis are bound
together on the server machine, so that the most updated database and the most re-
cent release of the tool are immediately available. Groups of researchers can use
3DSoftVis by sharing the same working environment without the constraint of
having to be located nearby or working on the same machine-platform.

6. Lessons Learned

Our experience with software visualization has been successful in providing insights
into the evolution of the software system in the case study. Since the use of 3-
dimensional and color visualization is rather rare in software engineering studies, here
we summarize some of the more general lessons we have learned in the hope that they
will be useful in future studies.
1. Information visualization is a powerful technique for examining huge data sets and

for understanding abstract information. Visual representations aid humans compre-
hension because they change the process of understanding from being a cognitive
task to being a perception task. Visual patterns are easy to detect and support dis-
covery of hidden dependencies in the data. These advantages, which have been ex-
ploited in other application areas, are also available in the study of abstract entities
such as software structure and qualities.

2. Three-dimensional visualizations allow the viewer to visually perceive the abstract
information about the structure of a software system. Navigation makes it possible
to change the viewpoint and quickly extract the data from the database. It could
serve as a functional interface to a configuration management system.

3. Color and region filling are two effective techniques for presenting data and enable
to quickly detect patterns. In our work, 2-D visualizations have been used to visu-
ally detect unstable modules and to discover unknown dependencies among system

9

components. The fact that color was helpful in detecting patterns is rather surpris-
ing because of the lack of any natural relationship between software and color.

4. The visualization system has been developed with components that are available in
the public domain. Without any particular expertise in graphics, we could build a 3-
D graphical application in a reasonable time. The web platform allows publishing
the tool on the web and simplifying the process of maintaining the database.

5. Evolution history of software systems contains valuable information for both soft-
ware developers and managers. This information concerns the quality of the sys-
tem. Visualization is the first technique we know of to make sense of the data that
quality assurance groups collect (and usually stay dormant).

7. Summary and conclusions

In this paper, we have presented our experiences in applying information visualization
techniques to the study of the evolution of a large telecommunication software system.
It rather surprising that the more advanced computer science technologies are not
usually applied within computer science itself. Although information visualization has
been successfully applied in many application areas, its application to the study of
software has been rare. It is certainly not part of any organized software process
model. Our experience shows that the planning phases of software development can
certainly benefit from the use of information visualization on software release data.
Traditionally, data are kept and analyzed by quality assurance groups with hardly any
feedback to, or influence on the work of development groups. Information visualiza-
tion could provide an effective medium of communication and collaboration between
the quality and development groups.

Also surprising was the fact that rather sophisticated graphics techniques are readily
available and can be used by non-experts to build useful visualization tools. Such tools
can then be published on the web for use by large communities of researchers and
engineers.

We were surprised by how well color depicted the patterns in the system’s evolu-
tion. Based on this experience, we believe that color has many potential applications in
the display of different software attributes.

References

1. Baker M. J., S. G. Eick, Visualizing Software Systems, AT&T Bell Laboratories, 1994.
2. Ball T. A., Eick S. G., Software visualization in the large, IEEE Computer, April 1996, pp.

33-43.
3. Carrière J. and Kazman R., Interacting with Huge Hierarchies: Beyond Cone Trees, Pro-

ceedings of Information Visualization '95, Atlanta, Georgia, Oct, 1995, pp. 74-81.
4. Chu H. and Koike H., How does 3D Visualization Work in Software Engineering ?: Em-

pirical Study of a 3D Version/Module Visualization System, International Conference
Software Engineering 98 (ICSE 98), 1998.

10

5. Eick S. G., Fyock D. E., Visualizing corporate data, AT&T Technical Journal, January
1996, pp. 74-76.

6. Eick S. G., Engineering perceptually effective visualizations for abstract data, in Gregory
M. Nielson, H. Mueller, and H. Hagen, editors, Scientific Visualization Overviews: Meth-
odologies and Techniques, IEEE Computer Science Press, February 1997, pp. 191-210.

7. Eick S. G., Steffen J. L., Sumner E. E. Jr, Seesoft - A Tool For Visualizing Line Oriented
Software Statistics, IEEE Transactions on Software Engineering, Vol. 18, No. 11, Nov
1992, pp. 957-968

8. Gall H., Hajek K., Jazayeri M., Detection of Logical Coupling Based on Product Release
History, International Conference on Software maintenance (ICSM ’98), Washington, DC,
1998.

9. Gall H., Jazayeri M., Klösch R., and Trausmuth G., Software evolution observations based
on product release history, International Conference on Software maintenance (ICSM '97)
(Bari, Italy), pages 160-6, IEEE Computer Society Press, September 1997.

10. Jazayeri M., Riva C., Experiences with developing Native World Wide Web Applications,
http://www.infosys.tuwien.ac.at/~riva/Docs/bibl/jaz98a/full/, to submit.

11. Jazayeri M., Riva C., Gall H., Visualizing the Software Release Histories: the use of Color
and Third Dimension, ACM Transactions on Software Engineering and Methodology, 1998,
submitted, also in Technical University of Vienna, Distributed Systems Group, technical re-
port TUV-1841-98-14.

12. Johnson B., Visualizing Hierarchical and Categorical Data, Ph.D. Thesis, Department of
Computer Science, University of Maryland, 1993.

13. Koike H., Chu H.: VRCS: Integrating Version Control and Module Management using
Interactive Three-Dimensional Graphics, Proceedings of 1997 IEEE Symposium on Visual
Languages (VL'97), 1997, pp.170-175.

14. Koike H., The role of another spatial dimension in software visualization, ACM Transac-
tions on Information Systems, 11(3), July 1993, pp. 266-286.

15. Koike H., Yoshihara H., Fractal Approaches for Visualizing Huge Hierarchies, Proceedings
of the 1993 IEEE Symposium on Visual Languages (VL'93), 1993, pp.55-60.

16. Riva C., Visualizing Software Release Histories: The Use of Color and Third Dimension,
Master's Thesis, Politecnico di Milano, Milan, Italy, June 1998, also in
http://www.infosys.tuwien.ac.at/~riva/Docs/bibl/riva98/full/

17. Robertson G. G., Mackinlay J. M. and Card S. K., Cone Trees: Animated 3D Visualizations
of Hierarchical Information, Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '91), ACM Press, 1991, pp. 189-194.

18. Shneiderman B., Tree Visualization with Treemaps: A 2D Space Filling Approach, ACM
Transactions on Graphics, Vol. 11, No. 1, 1992, pp. 92-99.

19. Ware C., Hui D., Franck G., Visualizing Object Oriented Software in Three Dimensions,
Conference Proceedings of CASCON' 93, Toronto, Canada, October, 1993, pp. 612-620.

20. 3DSoftVis Demo, Technical University of Vienna, Distributed Systems Group:
http://www.infosys.tuwien.ac.at/~riva/vis

11

Fig. 3. Subsystem A Fig. 4. Subsystem B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16Fig. 5. Subsystem C
17
18
19
20

Fig. 6. A module

Fig. 7. The structure of the system Fig. 8. Focusing on one subsystem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 9. The color scale

