
Visualizing Software Release Histories with 3DSoftVis

 Claudio Riva
 Software Technology Laboratory
 Nokia Research Center
 P.O. Box 407, FIN-00045
 Helsinki, Finland
 +358 40 749 0596
 claudio.riva@nokia.com

ABSTRACT
3DSoftVis is a three dimensional visualization tool
developed for the analysis of the evolution of an industrial
software system. This paper briefly introduces the
technique based on the Software Release Histories and
present the main capabilities offered by the tool for their
analysis.

Keywords
Information visualization, software evolution, maintenance

1 INTRODUCTION
The evolution of a large software system is a marvelous
process. Release after release, programmers modify the
system adding new features and changing the existing ones.
The evolution happens as a global process driven more by
changes in functionality than by low-level tinkering with
code. At the architectural level, changes are reflected by
added, removed or modified software modules.

The system release is the mechanism to control the
implementation of the changes. Changes become an
integral part of the system when the new release is
delivered and no other modifications are allowed. At a
generic release, a system may consist of components
developed in different moments of its life. The system
release identifies uniquely the system configuration and
composition at a specific time. Similarly to the internal
rings of a tree-trunk that unveils the tree history, software
releases represent fixed events in the system history.

The history of a software system’s evolution contains a
wealth of hidden information valuable to managers and
engineers in the development and enhancement of the
system. To our knowledge, such information is rarely used

or even taken in consideration.

Our work investigated the use of three dimensional
visualization techniques to make such information more
concrete and visible. In particular, we considered two
graphical techniques: color and third dimension. The
visualization techniques have been applied to the analysis
of the evolution of an industrial software system. A detailed
description can be found in the work of Jazayeri et al. [1]
[2] [3].

To support our techniques, we have developed a
visualization tool called 3DSoftVis. This paper introduces
the tool and gives an overview of its main features.
Although the tool is specialized to the analysis of the
industrial case study, we believe that the techniques are
generally applicable to the analysis of software release
histories and should become part of standard tool for
software management activities.

2 VISUALIZING THE SOFTWARE RELEASE
HISTORIES

The case study’s architecture is organized as a layered
system with four levels: system, subsystem, module and
program. Each level consists of one or more elements.
Table 1 shows an example of the software release history.
Each row represents the version numbers of a program
element. The first and second column (labeled Sub and
Mod) contain respectively the subsystem and module to
which the program belongs. The third column (labeled
Prog) contains the name of the program. The columns
labeled from 1 to 20 represent the twenty system releases
that have been considered. The version number of each
element is the RSN of the release where it had the latest
change. For example, if a program changes its
implementation at release 1, 2 and 5 then its version
numbers are the sequence < 1 2 2 2 5 5>.

The database is populated with 20 releases of the software
product. Each release contains 8 subsystems, 47 to 50
modules and 1500 to 2300 programs.

Table 1. The software release history.

Sub Mod Prog 1 2 3 4 5 6 … 20
Sub1 Mod A Prog A 1 2 2 2 5 5 … 18
Sub1 Mod A Prog B 0 2 3 4 5 0 … 20

The software release history consists of three entities: time,
system structure and version numbers. The entities are
visualized in one three-dimensional diagram. The
coordinate z stores the time information expressed in
release sequence number (RSN). The system structure is
displayed by 2-D or 3-D graphs. The graphs are spatially
positioned along the coordinate z at the value of their own
RSN. Four 3-D graphical objects are used to visualize the
system elements: cubes, spheres and bars for the
architectural entities and lines for the dependencies among
them. Version numbers are shown using colors. Colors are
associated with version numbers through a color scale. The
structural entities are painted according to their version
numbers. A percentage bar is a graphical object that offers
a compact representation of a group of elements. The size
of each colored block that composes the bar is proportional
to the percentage of modules that have the same version
number.

3 OVERVIEW OF 3DSOFTVIS
3DSoftVis consists of three components: a database, a 3-D
visualization engine and the graphical user interface. The
database contains the data regarding the evolution of the
software system. The 3-D visualization engine transforms
the data extracted from the database into 3-D models. The
user interface presents the graphs to the user through
multiple windows and allows the viewer to customize the
views interactively. Figure 5 shows a snapshot of the tool.

In the design of the 3DSoftVis, we decided to adopt an
innovative approach based on recent World Wide Web
technologies. Our goal has been to develop an application

that can be published on the web. The tool is currently
available on the web for a demo [6]. The tool has been
developed using web components such as Java,
VRML(Virtual Reality Modeling Language), JDBC and
HTML. The architecture of 3DSoftVis is depicted in Figure
1. A more detailed description can be found in [4].
Concerning the architecture, the major features of
3DSoftVis are summarized below.

• World Wide Web Application: the web architecture
makes the tool accessible from the network. Users can
run the tool simply accessing the web link. On the client
side 3DSoftVis requires a minimal configuration and
relieves users from installation troubles. The application
and the database reside on a remote server and they can
be easily upgraded for maintenance.

• Graphical engine based on VRML: VRML is an easy
solution for developing 3-D graphical tools. The choice
of VRML simplified considerably the implementation of
the graphical engine. VRML is also a standard web
component that can be easily integrated in a web
application.

• Collaborative environment: data and the application for
their analysis are bound together on the server machine,
so that the most updated database and the most recent
release of the tool are immediately available. Groups of
researchers can use 3DSoftVis by sharing the same
working environment without the constraint of having to
be located nearby or working on the same machine-
platform.

4 3DSOFTVIS AT WORK
3DSoftVis offers three kinds of visualizations for the
analysis of the evolution of the software release histories.
We used these three different views to examine the
industrial case study. The views are described below.

Figure 1. The architecture of 3DSoftVis
Server Client

Internet
(TCP/IP)

O
D
B
C

J
D
B
C

R
M
I

Database

Database
Server

VRML files
Java
package

H
T
M
L Javascript

Web Server

RMI

HTTP

Web Browser

Java Virtual Machine

JDBC
RMI

EAI AWT

VRML
Browser

Javascript
Interpreter

3-D Visualization of system structure at a single release

The case study has a tree hierarchical structure. 3DSoftVis
allows us to visualize the tree hierarchy with 2-D and 3-D
tree graphs. 3-D graphs are implemented using the Cone
Tree technology [5]. Figure 2 shows the whole structure of
one system release of the case study. The 3-D layout allows
the viewer to navigate the system structure and zoom on
subsystems.

Figure 2. The structure of the system in 3D.

3-D visualization of historical evolution

This view allows us to visualize multiple releases of the
system in order to examine the historical evolution. Each 2-
D tree graph represents the system structure at a particular
release. The third coordinate is expressed in RSN. Figure 3
shows an example. The 3-D diagram represents 10 releases
of one subsystem. The 2-D graph visualize all the programs
and modules that belong to the subsystem.

Figure 3. Visualizing the history of one subsystem.

2-D Visualization of historical evolution

2-D visualizations can be obtained by projecting the 3-D
diagram onto 2-D space. The picture obtained by the
projection reveals a concise and informative representation
of system evolution. Figure 4 shows an example. Each
picture visualizes the evolution of one module element
through the percentage bars. Each row is associated with a
system release. For each system release (from 1 to 20), the
percentage bars are displayed. The percentage bars show
with the same color the percentage of programs that have
the same version number. This representation highlights the
critical times—when major changes seem to have
happened—in the evolution of the whole module.

Figure 4. 2-D view of the evolution of modules contained
in one subsystem.

RSN

RSN

5 BENEFITS OF 3DSOFTVIS
3DSoftVis allowed us to examine the evolution of the large
industrial case studies in a simple and effective way. We
summarize the major benefits the tool gave us.

3-D layout and navigation

Visualizing both system structure and historical evolution
in one view, the user can analyze both the information at
the same time. The user can also virtually navigate into the
representation to find the best perspective to look at the
data. New representations can be easily obtained by just
rotating, zooming, projecting or moving the graphs.

Being an interactive tool, the user can also retrieve
information concerning the structural elements, like name
and version numbers, by simply clicking on the graphical
objects. This is faster and more attractive than examining
textual tables.

Observations on the historical evolution

Color visualizations can move the process of understanding
information from being a cognitive task to a perceptive
task. For example, the 2-D representations make evident
the useful trends in the historical evolution of the modules.

RSN

The stability of the modules is evident by two factors that
are clearly depicted in the representations:

- changing rates: changes of versions are visualized as
changes in colors. This gives to the viewer a
qualitative and intuitive indication of the changing
rates. High changing rates (unstable module) are
identified by regions where colors change very
quickly.

- Growing rates: the black color represents those
elements that have been removed from the module or
that have not been implemented yet. The modification
in size of the black region is proportional to the
growing rates of the module.

Pattern Detection

Visualization enables the humans’ pattern matching skills.
The human visual system is able to detect regions
characterized by repetitive use of the same shape, same
color, same filling or the same texture. Information
visualization exploits such ability for the analysis of
numerical data. Indeed, the identification of visual patterns
leads to the detection of dependencies and relationships
among system elements. In Figure 4, it is possible to
identify modules that have the same evolution pattern as
they have similar visual patterns.

ACKNOWLEDGEMENTS
I gratefully acknowledge Mehdi Jazayeri and Harald Gall
for their invaluable contribution and all the people at the
Distributed Systems Group at the Technical University of
Vienna. This work was supported by the European
Commission within the ESPRIT Framework IV project

ARES (Architectural Reasoning for Embedded Systems).

REFERENCES
1. Jazayeri M., Riva C., Gall H., Application of

Information Visualization to the Analysis of the
Software Release History, Proceedings of the Joint
EUROGRAPHICS and IEEE TCVG Symposium on
Visualization (VisSym '99), May 26-28, Vienna,
Austria, 1999, 237-246.

2. Gall H., Jazayeri M., Riva C., Visualizing Software
Release Histories: The Use of Color and Third
Dimension, Proceedings of the International
Conference on Software Maintenance (ICSM '99), Aug
30-Sep 3, Oxford, England, 1999, 99-108.

3. Riva C., Visualizing Software Release Histories: The
use of Color and Third Dimension, Master’s Thesis,
Politecnico di Milano, Milan, Italy, June 1998. Also in:
http://www.infosys.tuwien.ac.at/~riva/Docs/bibl/riva98/
full

4. Jazayeri M., Riva C., Experiences with developing
Native World Wide Web Applications, Internal Report,
at http://www.infosys.tuwien.ac.at/~riva/Docs/bibl/
jaz98a/full

5. Robertson G. G., Mackinlay J. M. and Card S. K., Cone
Trees: Animated 3D Visualizations of Hierarchical
Information, Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI '91), ACM
Press, 1991, pp. 189-194.

6. 3DSoftVis: demo at
http://www.infosys.tuwien.ac.at/visualization

Figure 5. A snapshot of 3DSoftVis.

Workspace

View

Property

http://www.infosys.tuwien.ac.at/~riva/Docs/bibl/jaz98a/full
http://www.infosys.tuwien.ac.at/~riva/Docs/bibl/jaz98a/full

	ABSTRACT
	Keywords

	INTRODUCTION
	VISUALIZING THE SOFTWARE RELEASE HISTORIES
	OVERVIEW OF 3DSOFTVIS
	3DSOFTVIS AT WORK
	BENEFITS OF 3DSOFTVIS
	ACKNOWLEDGEMENTS
	REFERENCES

