
Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR 2002), IEEE Computer Society
Press, 11-13 March 2002 in Budapest, Hungary.

Combining Static and Dynamic Views
for Architecture Reconstruction

Claudio Riva and Jordi Vidal Rodriguez
Nokia Research Center

Software Architecture Group
P.O. Box 407, FIN-00045 NOKIA GROUP

Tel.: +358 50 483 7403, Fax.: +358 7180 36308
{claudio.riva | jordi.vidal-rodriguez}@nokia.com

Abstract

Static analysis aims at recovering the structure of a
software system, while dynamic analysis focuses on its
run time behaviour. We propose a technique for
combining the analysis of static and dynamic
architectural information to support the task of
architecture reconstruction. The approach emphasises the
correct choice of architecturally significant concepts for
the reconstruction process and relies on abstraction
techniques for their manipulation. The technique allows
the software architect to create a set of architectural
views valuable for the architecture description of the
system.

To support our technique, we outline an environment that
relies on hierarchical typed directed graphs to show the
system’s structure and message sequence charts for its
behaviour. The main features of the environment are:
visualisation of static and dynamic views, synchronisation
of abstractions performed on the views, scripting support
and management of the use cases. The approach and the
environment are demonstrated with an example.

Keywords
Software Architecture, Reverse Engineering, MSC,
Dynamic Analysis, Architecture Reconstruction.

1 INTRODUCTION
A well-accepted way to think of a software architecture is
the “4+1 View” model proposed by P. Kruchten [9]. The
model suggests organising the architecture descriptions in
five different categories, called views: logical view,
process view, physical view and development view. The
fifth view, called scenarios or use cases, is used to
illustrate and validate the four views. The “4+1 model”
separates the description of the static and dynamic aspects

of a software architecture. The logical view is primarily
concerned with the functional requirements of the system.
It should describe how the system is partitioned and what
are the relationships among its parts. The process view is
focused on the dynamic aspects of the architecture
description and should describe the run-time behaviours
of the system. Soni, Nord and Hofmesiter [2] also
propose four different architectural views that are used to
describe software architectures: conceptual architecture,
module interconnection architecture, execution
architecture and code architecture. The separation
between static (conceptual, module and code architecture)
and dynamic aspects (execution) is evident in this
approach too. In our approach, we follow the definition of
software architecture given in [13] and we consider the
above-mentioned models as a practical way for describing
the software architecture of a system.

In both the approaches, multiple views obtained from
different perspectives are necessary for describing and
understanding software architectures. During the forward
engineering phase, the views are created by the minds of
the architects who are establishing the fundaments of the
software system implementation. These views are then
analysed and reviewed to validate the system architecture.
Once the development has started (an incremental and
iterative process), the architectural views have to been
maintained and synchronised with the actual
implementation. Either for monitoring the development
process or for validating the implementation, the
architects need updated information about the system
architecture. This poses the need for applying reverse
engineering techniques aimed at extracting the
architectural information from the actual implementation
of the system.

2

In our previous work [17], we have developed a set of
tools aimed at supporting specific reverse engineering
techniques that we call reverse architecting or
architecture reconstruction. These techniques and tools
are mainly focused with the extraction of architectural
information from the system implementation. A crucial
problem that we are addressing is to combine the
structural and dynamic information extracted from a
software system. This paper describes our technique to
solve this problem and the environment to support it.

2 RELATED WORK
The dynamic analysis aims at describing the run time
behaviour of a software system. Its contribution should be
considered during the reconstruction of a software
architecture. Most of the methods and tools are intended
to analyse only the static or the dynamic aspects of a
system but not both at the same time. For example, SCED
[7] or SCENE [8] are reverse engineering tools that focus
on the dynamic analysis tasks.

Some attempts have been done to merge the dynamic
information into static views. Systä [19] exploited Rigi
[16] and SCED [7] to combine static and dynamic
analysis. Her work was focused on Java source code level
and program comprehension. She used the concept of
horizontal and vertical abstractions to reduce the
complexity and raise the abstraction level of the subject
software. She also showed how the static information can
guide the dynamic analysis and how to slice the static
view using the dynamic data.

ISVis [5] is a tool for analysing C applications, which
offers vertical abstractions and restricted horizontal
abstractions. It only provides a MSC representation, and
the horizontal abstractions are limited without support for
static model visualisation.

Several tools use a kind of vertical abstraction to cope
with message complexity. SCENE [8] uses limited size
subscenarios and hyperlinks to source to aid program
understanding. SCED [7] uses algorithmic constructs to
express repetition like loops and subscenarios.

In the filed of tools for static and dynamic reverse
engineering there is an attempt based on Dali [6] to
support the static and dynamic analysis for object oriented
software. Program explorer [21], supports source code,
class hierarchy, invocation and object graphs. They are
synchronised but the tool lacks of abstraction capabilities
and is C++ domain dependent. Richner et al. [15] present
a method to create views that combine static and dynamic
information for object-oriented software. It is based on a
logic programming language (Prolog) to query the data
and on digraphs for the visualisation. R. Holt has also
presented a method for manipulating software
architecture data using the relational algebra of Tarski [3].

The major shortcomings of the current approaches are
(1) architectural level is not the primary focus because
most of the tools focus on source-level program
understanding, (2) lack of automation in the extraction
and analysis process, (3) lack of complete graphical
visualisation of software models and (4) the tools are
often coupled with a specific programming language and
can be hardly used to handle generic architectural
concepts like applications, servers and subsystems.

3 ARCHITECTURE RECONSTRUCTION
The description of a software architecture should
communicate the essential decisions that have been taken
in the design of a software system [13]. Architecture
reconstruction (or reverse architecting) concerns with the
task of recovering the past design decisions that have
been taken during the development of a system. They
comprise either decisions that have been lost (because not
documented or developers have left) or are unknown (for
examples, assumptions not initially take into account).
The reconstruction is performed by examining the
available artefacts (documentation, source code, experts)
and by inferring new architectural information that is not
immediately evident. Our approach can be summarised in
the following four-step iterative process [17]:

1. Definition of architectural concepts

The goal is to recover and clarify the architecturally
significant concepts that build the system. These concepts
represent the way developers think of a system and they
should become the terminology of the reconstruction
process. They concern the building blocks of the system
and the communication infrastructure that enables the
components to communicate at runtime. In a distributed
software system the architectural concepts may be
applications, servers, software busses while in an
operating system they may be tasks, processes, queues,
shared memories, etc.

2. Data gathering

This phase gathers the relevant information for describing
the software architecture of the system. We build a model
of the system whose entities are instances of the concepts
identified in the phase 1. A correct choice of the concepts
will ensure that the model is filled with entities at the
right level of abstraction. Source code is usually the most
dependable for static analysis and simulation for dynamic
analysis. However, documentation, software diagrams
(for example, stored in CASE tools), experts can
contribute to the creation of the model.

The static information is extracted by analysing the
source code and searching for architectural significant
elements. This can be achieved with ad hoc analysers
(like presented in out previous work [17]) or with existing
source code analysers (like SourceNavigator [14] and

3

Columbus [12]).

The dynamic information is obtained by instrumenting
the source code and executing different scenarios in a
simulator. We instrument the source code with ThirdEye
[10] and select the scenarios among the features of the
system. This choice aims at enabling the architects to
understand how the features are implemented in a system.

3. Abstraction

The model of the previous phase is usually at a very low
level of abstraction. The goal of this phase is to enrich the
model with domain dependent abstractions that will lead
to a high level view of the system. Known abstractions
can be easily added to the model. Unknown abstractions
have to be identified by the architects, categorised, named
and then stored in the model. Such reasoning is conducted
manually by the architects and then fixed in a set of
abstraction rules. The abstraction process has also to
produce the architectural views that will be presented in
the last phase (for example, according to the 4+1 model
[9]). The abstraction process is supported by a Prolog
system. This allows us to formally specify the abstraction
rules and the transformations that we need to apply to the
model. The abstractions rules can be reused for later
versions of the same system.

4. Presentation

The architects need to present the reconstructed
architecture in different formats. We allow the architects
to select a particular architectural view (logical, process,
physical, development) and a particular format: graphs
(using Rigi) for the static views and a simplified version
of message sequence charts [4] for the dynamic views.
We have also exploited UML visualisations with the tool
Venice [20].

4 REQUIREMENTS FOR THE APPROACH
As we pointed out in Section 2, most of the approaches
collect language dependent data either by parsing the
source code or by tracing functions calls at run time. Such
a low-level reverse engineering leads to a low-level
comprehension of the subject software even after
applying abstractions.

Our goal is to generate architecturally significant views of
the system based on static and dynamic information. We
want to allow the architects to start from a high-level
view of the structure and behaviour of the subject
software, and then to descend the levels of abstraction to
focus on the details of the implementation or smaller parts
of the system.

The high level view should not contain language
programming artefacts as it is mainly intended to inform
the architect about the important relationships of the
system’s high level components. We use directed graphs

to represent the system’s structure [17], and message
sequence charts (MSC) [4] for describing its behaviour.
The representations are based on generic elements and
they allow us to describe software architectures for
different domains. In the MSC we use concepts like
participant and message, which can be matched for
instance with subsystems at high level or function calls at
source code level.

To cope with the complexity of the message sequence
charts, we need two mechanisms of abstractions:
horizontal and vertical abstractions. Horizontal
abstractions allow us to group the participants of a MSC
in order to reduce their number. As the participants are
architectural entities in the static view, the horizontal
grouping in the MSC has to be linked to the hierarchical
grouping in the static view. Vertical abstractions consist
with grouping a set of contiguous messages into one high-
level message. This allows us to reduce the amount of
messages and to order them according to the scenarios
and sub-scenarios.

We follow an iterative process for refining the
architectural model with the aid of the system knowledge.
The initial raw model is a plain representation of the
system without any hierarchical structure in the static
view and many message repetitions in the dynamic view.
To simplify the model, the user needs to switch between
different views (static and dynamic) and maintain them
synchronised. The synchronisation helps the user in
identifying interesting relations in the structure (static
view) and behaviour (dynamic view) of the system. As
proposed by T. Systä [19], we group the participants of
the dynamic views using the static information and we
use the dynamic view to slice the static view to reduce its
complexity.

The use cases are also a mechanism for compressing the
dynamic view. We can break the trace into a set of
hierarchical use cases, which provide a logical partition of
the software behaviour by functionality. A use case is the
ordered set of messages used to accomplish a software
system or user level goal. A scenario is a contiguous
sequence of messages that performs a concrete function
but needs the context of a use case. A scenario can appear
several times in the use case or others and contributes to
build up and achieve the goal of the use cases. For
instance, a user can ‘load a file’ (use case) in a tool, and
the program executes many ‘read record’ calls (scenario),
which uses some lower level calls.

We can summarise the requirements in the following
points:

- Architecture and programming language independent
approach.

- Generation of high-level views of the structure and

4

behaviour.

- Interactive manipulation and synchronisation of static
and dynamic views.

- Abstraction widely used to cope with system
complexity (message and participant compression,
hierarchical grouping)

- Management of scenarios (and use cases).

- Support for an iterative process of data analysis

5 THE APPROACH
Our technique aims at creating architectural views based
on static and dynamic information. We are seeking two
key improvements for the analysis of dynamic
information: (1) an effective method for managing
vertical and horizontal abstractions and, (2) the
integration of the static and dynamic tools in the same RE
environment. A major constraint is on the independence
of the RE environment from the subject system. We aim
at decoupling the system domain dependent information
from the generic concepts of the RE environment in order
to easily customise the environment according to any
subject system. Data gathering phase is system
dependent.

We use the Rigi environment for the static visualisation
of the system structure [17] with hierarchical typed
graphs. Graphs can be customised according to the
subject system with the Rigi’s concept of domain. Rigi is
an open environment that can be easily extended using
the Tcl/Tk language. We have extended Rigi to support
the visualisation of dynamic data. Figure 1 shows the
integration scheme. The MSC visualisation tool is able to
exchange data with Rigi, reacting when static abstractions
are performed and vice versa. The synchronisation of
both views is essential because the user need to work on
the multiple views at the same time. The data from the
static and dynamic analysis are represented with Prolog
facts. A set of Prolog propositions is used to process the
data and generated the required format for Rigi and the
MSC visualisation tool.

The main features of the environment are: (1) the ability
to perform horizontal and vertical abstraction on the
dynamic view, (2) the integration with a static analysis
tool and, (3) the support for the management of
hierarchical use cases, (4) a scripting facility based on
Tcl/Tk for customisation and batch processing.

M enu

Com m ands

M SC

M SC file
form at

RIGI file
form at

RIG I

Prolog

Static Analysis
Data

Traces

Figure 1 Integration scheme of the MSC tool in Rigi.

Figure 2 shows the different types of abstractions
supported on the dynamic view. Diagram a) shows the
initial MSC, diagram b) shows an horizontal abstraction
over participants A and B, diagram c) shows a vertical
abstraction over messages M1 to M4, and diagram d)
shows the effect of both types of abstraction, resulting in
a simplified and high-level MSC.

A B C

M 1

M 2

M 3M 4

M 9

M 10

M 11

M 12

M 5

M 6

M 7

M 8

A B C

A B C

M 5

M 6

M 7

M 8

M 1-M 4

M 9-M 12

O riginal M SC H orizontal abstraction

V ertical abstraction

A B C

M 1-M 4

M 7

M 9-M 12

H orizontal and V eritcal
abstractions

M 10

M 11

M 7

M 2

M 3

Figure 2. Horizontal and Vertical abstractions in

MSC.

In the MSC file format, we have implemented a support
for the management of use cases. We need this feature to
cope with the complexity and size of traces. The use cases
provide a logical hierarchy for partitioning the long traces
that we extract. Use cases can be used to describe HMSC

5

and the scenarios bMSC [4]. During the data-gathering
phase, we organise the use cases in a tree hierarchy
(nested use cases are possible) as shown in Figure 3. The
hierarchy is defined during the data gathering phase,
inserting bookmarks in the trace. The use cases hierarchy
can be used to slice the dynamic views and provides
context information of the current scenario being
analysed. The abstractions applied on one scenario are
also reflected overamong the other scenarios in the
hierarchy.

T
ra
ce
 f
lo
w

A

F

B C
E

D

A

B

C

E

F

D

Figure 3. Three views of the Use Case hierarchy.

6 AN EXAMPLE
We demonstrate the approach with an example that is the
simplification of a real case. The description follows the
fours steps of the process described in Section 3.

Architectural Concepts
We start examining the architectural documentation in
order to identify the architecturally significant concepts
that build the system. The system is component based.
Components represent computational units or system
resource controllers and expose well-defined interfaces.
The communication among the components is achieved
with the exchange of asynchronous messages. The
operating system takes care of the delivery of the
messages using a software bus. There are three primitives
for registering on the bus, sending and receiving
messages:

register(ID) – primitive to register a component on the
bus.

send(dest, msg) – primitive for sending a message to dest.

recv(src, msg) – primitive for retrieving a message from
the component’s queue.

When the components are initialised, they register
themselves on the bus with a unique identifier that is
statically assigned at compile time. The same identifier is
used in the sending and receiving primitives.

One key issue of the architects is to manage the
organisation of the components so that they can
collaborate to implement the system’s features. Each
message exchange between two components creates a
dependency that has to be taken into account by the
architect. In a system with hundreds of components the
dependency graph becomes rather complicated. For this
task, the architects can find very useful to have a logical
view that shows the organisation of the components in
packages and their dependences and an execution view
that shows how the components interact. To generate
those views, we have to analyse the exchange of
messages statically and dynamically. This is the focus of
the next phases.

Extraction of Static Information
The extraction of the static information is carried out with
a source code analyser that detects all the communication
instances in the source code. The approach is similar to
the one described in our previous work [17].

The output of the extraction is presented as a set of Prolog
facts. Each fact defines a relationship between two
elements of the model. In our case, we have created (1)
the ‘register’ relationship between a component’s
directory and its name on the software bus and (2) the
‘message’ relationship among the sender, receiver and
content of a message. Below there is a sample of the
information extracted by the code analyser.

register(‘/gui/voice’,’VOICE_CTRL’).
m essage('VOICE_CTRL','PROTO COL','sel_prot').
m essage('VOICE_CTRL','PROTO COL','connect').
register(‘/gui/data’,’DATA_CTRL’).
m essage('DATA_CTRL','PROTO COL','sel_prot').
register(‘/resource/protocol’,’PRO TOCOL’).
m essage('PROTOCO L','RADIO','setup').
register(‘/gui/m akeCall’,’M AKE_CALL’).
m essage('M AKE_CALL','DISPLAY','write').

For instance, the first line means that the directory
‘/gui/voice’ contains the implementation of the
component ‘VOICE_CTRL’. The second line means that
the component ‘VOICE_CTRL’ sends a message to the
component ‘PROTOCL’ and the message is ‘sel_prot’.

Abstraction
The extracted source code model is at a very low level of
abstraction. The abstraction process can be divided in two
steps: composition rules and view selection.

Composition Rules

This step concerns with adding the part-of relationships to
the model. It is a crucial activity of the abstraction
process because it creates a hierarchical structure in the
model that simplifies its navigation. The composition
rules specify how the source code elements are grouped

6

to form subsystems or more abstracted entities.

Below there is an example in Prolog where we define four
new components. The components are associated to the
directory that contains its implementation.

contain(‘Call’,X) :- register(‘/gui/voice’,X).
contain(‘Call’,X) :- register(‘/gui/data’,X).
contain(‘M essaging’,X) :- register(‘/gui/inst_m sg’,X).
contain(‘M essaging’,X) :- register(‘/gui/em ail’,X).
contain(‘Network’,X) :- register(‘/resource/protocol’,X).

The previous components are then grouped in subsystems
according to their functionality.

contain(‘Services’,’Call’).
contain(‘Services’,’Call’).
contain(‘G UI’,’Services’).
contain(‘G UI’,’Application’).
contain(‘Resources’,’Display’).
contain(‘Resources’,’Network’).

View selection

To define a view, we need (1) to select its representation
format and (2) to define the set of relationships that have
to be projected in it. We use graph-based representations
for the static information and message sequence charts for
the dynamic information

To create the static view we need to compute the high
level dependencies among the components. We represent
the logical view with the typed oriented hierarchical
graphs of Rigi. This is achieved by (1) defining a
grouping relationships that describes the hierarchy, (2)
defining the set of relationships of the graph, (3)
compuing the transitive closure and (4) create the graph.

Below there is the Prolog code that defines the grouping
relationship and the relation relationship for our simple
example.

grouping(X,Y) :- contain(X,Y).
relation(X,Y) :- m essage(X,Y).

We can calculate the reflexive transitive closure with an
auxiliary function trans defined below:

trans(R,X,Y) :- P=..[R,X,Y], call(P).
trans(R,X,Y) :- P=..[R,X,Link],call(P), trans(R,Link,Y).
trans(_,X,X).

We can then create the graph by defining a hierarchy
relationship that is basically identical to the grouping
relationship. The edges of the graph are obtained by the
transitive closure. Below there is the Prolog code.

hierachy(X,Y) :- grouping(X,Y).
edge(X,Y):-tran(grouping,X,Item 1),tran(grouping,Y,Item 2),

relation(Item 1, Item 2).

In this simple example, we have not taken in
consideration the management of the types of the nodes

that is done in the real case.

Visualisation.
The logical view can be visualised with Rigi as a
hierarchical graph. We can also export the graph from
Rigi to the Venice. Venice allows us to show the logical
view in the UML notation. We use the notation proposed
in [18]. Figure 4 shows the logical view of the example.
The packages have been created according to the
hierarchy relationship. The edges show the high level
dependencies that exist among the packages. The user can
select the level of detail for the visualisation of the edges
[20].

Figure 4. The component view visualised with Venice.

Extract dynamic information.
The extraction of dynamic information is conducted by
(1) instrumenting the source code, (2) executing a set of
usage scenarios and (3) collecting the traces. The
architectural concepts of the first phase drive us in the
choice of the correct instrumentation of the system. In the
example, we can trace all the calls to the ‘send’ primitive
that are architecturally significant for our system.

We use the ThirdEye [10] environment for instrumenting
the code. In the example, we execute two scenarios in the
system simulator. Each scenario is represented by a
sequence of commands. The traces are then converted to
Prolog facts. And example is given below.

trace(’sc_start’,’M akeCall’,’’,’’,1).
trace(’m sg’,’M AKE_CALL’,’DISPLAY’,’sel_num ’,2).
trace(’m sg’,’M AKE_CALL’,’VO ICE_CTRL’,’setup’,3).
trace(’m sg’,’VO ICE_CTRL’,’PRO TO CO L’,’sel_prot’,4).
...
trace(’m sg’,’VO ICE_CTRL’,’M AKE_CALL’,’callact’,14).
trace(’sc_end’,’M akeCall’,’’,’’,15).
trace(’sc_start’,’SendM ail’,’’,’’,16).
trace(’m sg’,’SEND_M AIL’,’EM AIL’,’setup’,17).
...
trace(’m sg’,’PRO TO CO L’,’DATA_CTRL’,’ack’,29).

7

trace(’m sg’,’DATA_CTRL’,’EM AIL’,’con_active’,30).
trace(’sc_end’,’SendM ail’,’’,’’,31).

The ‘trace’ relationship contains the type of the trace, the
sender, the receiver, a label and the time stamp. Two
special events (‘sc_start’ and ‘sc_end’) delimit the begin
and end of a scenario. We elaborate the traces with
Prolog propositions in order to apply the abstraction rules
created during the static analysis. We plan to use Prolog
also to separate the different scenarios and to detect
patterns in the sequence chart. The results can be exported
to the Message Sequence Chart visualiser.

Navigating Static and Dynamic Views
We present an example of navigation in the architectural
model with both the static and dynamic views. Figure 5
shows a graph-based representation of the logical view of
Figure 4 in Rigi. The graph shows the two components at
the highest level of abstraction: ‘GUI’ and ‘Resources’.
The process (or execution) view is visualised in the MSC
Visualiser as shown in Figure 6. The MSC is shown at the
same level of abstraction as the logical view in Rigi.
Therefore, only the two high level participants and
messages are visualised. The messages that are exchanged
among the nodes contained in the two participants are
hidden. This reduces the objects to be visualised and
simplifies the understanding of the MSC.

The user can navigate the two views by expanding or
collapsing the nodes in the same style like in Rigi. The
system takes care of maintaining the two views
synchronised. We imagine the user wants to investigate
the details of the ‘GUI’ component. The user can expand
the GUI node for example in the logical view, as shown
in Figure 7. The same effect is propagated to the MSC, as
shown in Figure 8. The messages between the two
components (‘Services’ and ‘Application’) of the ‘GUI’
component are visible. The same result can be achieved
by selecting and expanding a node in the MSC.

The user can also apply vertical abstractions in order to
hide a set of messages. In Figure 9, the user selects a set
of messages. The selection can be either contiguous or
not. The user can then group together the messages in one
single message that represents them. In case of un-
contiguous messages, multiple groups are created. The
result of the grouping is shown in Figure 10. Figure 11
and Figure 12 show the views at a lower level of
abstraction where the two low level elements
(‘MAKE_CALL’ and ‘SEND_MAIL’) are visible.

The user can also follow a bottom-up approach by
starting with a raw model and by grouping the nodes
towards higher levels of abstraction. The system takes
care of keeping the views synchronised.

7 CONCLUSIONS AND FUTURE WORK
Understanding a software architecture requires both static

and dynamic information to be available and presented in
different views. Abstraction plays a key role in reducing
the complexity of the models in different dimensions
(system structure, organisation of scenarios, participants
and messages in the MSC).

We have highlighted that the architectural views have to
be maintained synchronised in order to present the static
and dynamic views at the same level of abstraction.

The end-user customisation represents a powerful
mechanism to tailor the tools for the specific subject
system needs. It is an improvement to cope with the wide
variety of programming languages. Moreover, it makes
easy to introduce new features, to aid the process of
abstracting and understanding, like dynamic metrics
calculation and participants clustering algorithms [1].

The use case hierarchy allows the user to select the
starting point of the analysis, either from a bottom-up or a
top-down approach.

The use case hierarchy allows the user to focus into more
concrete use cases or scenarios. The hierarchy could be
used to generate other static-dynamic representations, as
in [11], or collaboration diagrams, at different levels of
architecture abstraction. As well, it is useful for program
comprehension, to isolate smaller scenarios, discover
errors or analyse concrete behaviour.

Our future work will focus on creating a better
management for the scenarios and defining a technique
for detecting interaction patterns in the MSC using
Prolog.

8 REFERENCES
1. Cho E. S., Kim C. J., Kim S. D., Rhew S. Y., Static

and Dynamic Metrics for Effective Object Clustering,
Proceedings of the Asia Pacific Software Engineering
Conference, December 2-4 1998, Taipei, Taiwan.

2. Hofmeister C., Nord R.L. and Soni D., Describing
Software Architecture with UML, Proc. of the 1st
Working IFIP Conference on Software Architecture,
Kluwer Academic Publishers, 1999.

3. Holt R., Structural Manipulations of Software
Architecture using Tarski Relational Algebra,
Proceedings of the Working Conference on Reverse
Engineering 1998, pp. 210-219, 1998.

4. ITU-T. recommendations Z.120. ITU –
Telecommunication Standarization Sector, Geneva,
Switzerland, may 1996. review draft Version.

5. Jerding D., Rugaber S., Using visualization for
Architectural Localization and Extraction,
Proceedings of the Working Conference on Reverse
Engineering, (WCRE97), pp. 56-65, October 1997,
Amsterdam, Netherlands..

8

6. Kazman R., Carrière S. J., View Extraction and View
Fusion in Architectural Understanding, Proceedings
of the fifth International Conference on Software
Reuse (ICSR5), pp.290-299, IEEE Computer Society
Press, Victoria, B.C, Canada, June 1998.

7. Koskimies K., Männistö T., Systä T., Tuomi J.:
Automated support for modeling of OO software.
IEEE Software, January/February 1998, 87-94.

8. Koskimies K., Mössenböck H., SCENE: Using
Scenario Diagrams and Active Text for Illustrating
Object-Oriented Programs, Proceedings of the 18th
International Conference on Software Engineering,
(ICSE ’96), IEEE Computer Society Press, pp 366-
375, 1996.

9. Kruchten P.B., The 4+1 View Model of architecture,
IEEE Software, 12(6):42-50, 1995.

10. Lencevicius R., Ran A., Yairi R., ThirdEye –
Specification-Based Analysis of Software Execution
Traces, Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000),
Limerick, Ireland, 4-11 June, 2000, page 772.

11. Leue,S., Mehrmann L., Rezai M., Synthesizing
software architecture descriptions from Message
Sequence Chart specifications, Proceedings of the
13th IEEE International Conference on Automated
Software Engineering (ASE ’98), 1998, Page(s): 192 -
195

12. R. Ferenc, F. Magyar, Á. Beszédes, Á. Kiss and M.
Tarkiainen. Columbus - Tool for Reverse Engineering
Large Object Oriented Software Systems, Proc. of
SPLST 2001, Szeged, Hungary, pp. 16-27, June 15-
16, 2001. (ed. T. Gyimothy)

13. Ran A., “ARES Conceptual Framework for Software
Architecture” in M. Jazayeri, A. Ran, F. van der
Linden (eds.), Software Architecture for Product
Families Principles and Practice, Addison Wesley,
2000.

14. RedHat Source Navigator,
http://sources.redhat.com/sourcenav/

15. Richner T., Ducasse S., Recovering high-level views
of object-oriented applications from static and
dynamic information, Proceedings of the IEEE
International Conference on Software Maintenance
(ICSM '99), Oxford, 1999, Page(s): 13 -22

16. Rigi: a visual tool for understanding legacy systems,
University of Victoria, http://www.rigi.csc.uvic.ca/

17. Riva C., Reverse Architecting: an Industrial
Experience Report, Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE2000),
Brisbane, Australia, 23-25 November, 2000.

18. Riva C., Xu J. and Maccari A., Architecting and
Reverse Architecting in UML, Workshop on
Describing Software Architecture with UML,
International Conference on Software Engineering
2001 (ICSE), Toronto, May 2001.

19. Systä T., Static and Dynamic Reverse Engineering
Techniques for Java Software Systems, Ph.D Thesis,
University of Tampere, Dept. of Computer and
Information Sciences, Report A-2000-4, 2000.

20. Venice, http://www.cs.Helsinki.FI/group/venice/

21.Danny B. Lange and Yuichi Nakamura. Program
Explorer: A Program Visualiser for C++. In Proc. of
the USENIX Conference on Object-Oriented
Technologies, June 1995.

 9

Figure 5. The component view in Rigi.

Figure 6. The MSC in the MSC visualisarer.

Figure 7. Expand node.

Figure 8. Expand node.

Figure 9. Selection in MSC.

Figure 10. Grouping.

Figure 11. Low level.

Figure 12. Low level details in MSC.

