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Abstract 

Static analysis aims at recovering the structure of a 
software system, while dynamic analysis focuses on its 
run time behaviour. We propose a technique for 
combining the analysis of static and dynamic 
architectural information to support the task of 
architecture reconstruction. The approach emphasises the 
correct choice of architecturally significant concepts for 
the reconstruction process and relies on abstraction 
techniques for their manipulation. The technique allows 
the software architect to create a set of architectural 
views valuable for the architecture description of the 
system. 

To support our technique, we outline an environment that 
relies on hierarchical typed directed graphs to show the 
system’s structure and message sequence charts for its 
behaviour. The main features of the environment are: 
visualisation of static and dynamic views, synchronisation 
of abstractions performed on the views, scripting support 
and management of the use cases. The approach and the 
environment are demonstrated with an example. 

Keywords 
Software Architecture, Reverse Engineering, MSC, 
Dynamic Analysis, Architecture Reconstruction. 

1 INTRODUCTION 
A well-accepted way to think of a software architecture is 
the “4+1 View” model proposed by P. Kruchten [9]. The 
model suggests organising the architecture descriptions in 
five different categories, called views: logical view, 
process view, physical view and development view. The 
fifth view, called scenarios or use cases, is used to 
illustrate and validate the four views. The “4+1 model” 
separates the description of the static and dynamic aspects 

of a software architecture. The logical view is primarily 
concerned with the functional requirements of the system. 
It should describe how the system is partitioned and what 
are the relationships among its parts. The process view is 
focused on the dynamic aspects of the architecture 
description and should describe the run-time behaviours 
of the system. Soni, Nord and Hofmesiter [2] also 
propose four different architectural views that are used to 
describe software architectures: conceptual architecture, 
module interconnection architecture, execution 
architecture and code architecture. The separation 
between static (conceptual, module and code architecture) 
and dynamic aspects (execution) is evident in this 
approach too. In our approach, we follow the definition of 
software architecture given in [13] and we consider the 
above-mentioned models as a practical way for describing 
the software architecture of a system. 

In both the approaches, multiple views obtained from 
different perspectives are necessary for describing and 
understanding software architectures. During the forward 
engineering phase, the views are created by the minds of 
the architects who are establishing the fundaments of the 
software system implementation. These views are then 
analysed and reviewed to validate the system architecture. 
Once the development has started (an incremental and 
iterative process), the architectural views have to been 
maintained and synchronised with the actual 
implementation. Either for monitoring the development 
process or for validating the implementation, the 
architects need updated information about the system 
architecture. This poses the need for applying reverse 
engineering techniques aimed at extracting the 
architectural information from the actual implementation 
of the system. 
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In our previous work [17], we have developed a set of 
tools aimed at supporting specific reverse engineering 
techniques that we call reverse architecting or 
architecture reconstruction. These techniques and tools 
are mainly focused with the extraction of architectural 
information from the system implementation. A crucial 
problem that we are addressing is to combine the 
structural and dynamic information extracted from a 
software system. This paper describes our technique to 
solve this problem and the environment to support it. 

2 RELATED WORK 
The dynamic analysis aims at describing the run time 
behaviour of a software system. Its contribution should be 
considered during the reconstruction of a software 
architecture. Most of the methods and tools are intended 
to analyse only the static or the dynamic aspects of a 
system but not both at the same time. For example, SCED 
[7] or SCENE [8] are reverse engineering tools that focus 
on the dynamic analysis tasks. 

Some attempts have been done to merge the dynamic 
information into static views. Systä [19] exploited Rigi 
[16] and SCED [7] to combine static and dynamic 
analysis. Her work was focused on Java source code level 
and program comprehension. She used the concept of 
horizontal and vertical abstractions to reduce the 
complexity and raise the abstraction level of the subject 
software. She also showed how the static information can 
guide the dynamic analysis and how to slice the static 
view using the dynamic data.  

ISVis [5] is a tool for analysing C applications, which 
offers vertical abstractions and restricted horizontal 
abstractions. It only provides a MSC representation, and 
the horizontal abstractions are limited without support for 
static model visualisation. 

Several tools use a kind of vertical abstraction to cope 
with message complexity.  SCENE [8] uses limited size 
subscenarios and hyperlinks to source to aid program 
understanding. SCED [7] uses algorithmic constructs to 
express repetition like loops and subscenarios.  

In the filed of tools for static and dynamic reverse 
engineering there is an attempt based on Dali [6] to 
support the static and dynamic analysis for object oriented 
software. Program explorer [21], supports source code, 
class hierarchy, invocation and object graphs. They are 
synchronised but the tool lacks of abstraction capabilities 
and is C++ domain dependent. Richner et al. [15] present 
a method to create views that combine static and dynamic 
information for object-oriented software. It is based on a 
logic programming language (Prolog) to query the data 
and on digraphs for the visualisation. R. Holt has also 
presented a method for manipulating software 
architecture data using the relational algebra of Tarski [3]. 

The major shortcomings  of  the  current  approaches are 
(1) architectural level is not the primary focus because 
most of the tools focus on source-level program 
understanding, (2) lack of automation in the extraction 
and analysis process, (3) lack of complete graphical 
visualisation of software models and (4) the tools are 
often coupled with a specific programming language and 
can be hardly used to handle generic architectural 
concepts like applications, servers and subsystems. 

3 ARCHITECTURE RECONSTRUCTION 
The description of a software architecture should 
communicate the essential decisions that have been taken 
in the design of a software system [13]. Architecture 
reconstruction (or reverse architecting) concerns with the 
task of recovering the past design decisions that have 
been taken during the development of a system. They 
comprise either decisions that have been lost (because not 
documented or developers have left) or are unknown (for 
examples, assumptions not initially take into account). 
The reconstruction is performed by examining the 
available artefacts (documentation, source code, experts) 
and by inferring new architectural information that is not 
immediately evident. Our approach can be summarised in 
the following four-step iterative process [17]: 

1. Definition of architectural concepts 

The goal is to recover and clarify the architecturally 
significant concepts that build the system. These concepts 
represent the way developers think of a system and they 
should become the terminology of the reconstruction 
process. They concern the building blocks of the system 
and the communication infrastructure that enables the 
components to communicate at runtime. In a distributed 
software system the architectural concepts may be 
applications, servers, software busses while in an 
operating system they may be tasks, processes, queues, 
shared memories, etc. 

2. Data gathering 

This phase gathers the relevant information for describing 
the software architecture of the system. We build a model 
of the system whose entities are instances of the concepts 
identified in the phase 1. A correct choice of the concepts 
will ensure that the model is filled with entities at the 
right level of abstraction. Source code is usually the most 
dependable for static analysis and simulation for dynamic 
analysis. However, documentation, software diagrams 
(for example, stored in CASE tools), experts can 
contribute to the creation of the model.  

The static information is extracted by analysing the 
source code and searching for architectural significant 
elements. This can be achieved with ad hoc analysers 
(like presented in out previous work [17]) or with existing 
source code analysers (like SourceNavigator [14] and 
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Columbus [12]).  

The dynamic information is obtained by instrumenting 
the source code and executing different scenarios in a 
simulator. We instrument the source code with ThirdEye 
[10] and select the scenarios among the features of the 
system. This choice aims at enabling the architects to 
understand how the features are implemented in a system. 

3. Abstraction 

The model of the previous phase is usually at a very low 
level of abstraction. The goal of this phase is to enrich the 
model with domain dependent abstractions that will lead 
to a high level view of the system. Known abstractions 
can be easily added to the model. Unknown abstractions 
have to be identified by the architects, categorised, named 
and then stored in the model. Such reasoning is conducted 
manually by the architects and then fixed in a set of 
abstraction rules. The abstraction process has also to 
produce the architectural views that will be presented in 
the last phase (for example, according to the 4+1 model 
[9]). The abstraction process is supported by a Prolog 
system. This allows us to formally specify the abstraction 
rules and the transformations that we need to apply to the 
model. The abstractions rules can be reused for later 
versions of the same system. 

4. Presentation 

The architects need to present the reconstructed 
architecture in different formats. We allow the architects 
to select a particular architectural view (logical, process, 
physical, development) and a particular format: graphs 
(using Rigi) for the static views and a simplified version 
of message sequence charts [4] for the dynamic views. 
We have also exploited UML visualisations with the tool 
Venice [20]. 

4 REQUIREMENTS FOR THE APPROACH 
As we pointed out in Section 2, most of the approaches 
collect language dependent data either by parsing the 
source code or by tracing functions calls at run time. Such 
a low-level reverse engineering leads to a low-level 
comprehension of the subject software even after 
applying abstractions. 

Our goal is to generate architecturally significant views of 
the system based on static and dynamic information. We 
want to allow the architects to start from a high-level 
view of the structure and behaviour of the subject 
software, and then to descend the levels of abstraction to 
focus on the details of the implementation or smaller parts 
of the system. 

The high level view should not contain language 
programming artefacts as it is mainly intended to inform 
the architect about the important relationships of the 
system’s high level components. We use directed graphs 

to represent the system’s structure [17], and message 
sequence charts (MSC) [4] for describing its behaviour. 
The representations are based on generic elements and 
they allow us to describe software architectures for 
different domains. In the MSC we use concepts like 
participant and message, which can be matched for 
instance with subsystems at high level or function calls at 
source code level. 

To cope with the complexity of the message sequence 
charts, we need two mechanisms of abstractions: 
horizontal and vertical abstractions. Horizontal 
abstractions allow us to group the participants of a MSC 
in order to reduce their number. As the participants are 
architectural entities in the static view, the horizontal 
grouping in the MSC has to be linked to the hierarchical 
grouping in the static view. Vertical abstractions consist 
with grouping a set of contiguous messages into one high-
level message. This allows us to reduce the amount of 
messages and to order them according to the scenarios 
and sub-scenarios. 

We follow an iterative process for refining the 
architectural model with the aid of the system knowledge. 
The initial raw model is a plain representation of the 
system without any hierarchical structure in the static 
view and many message repetitions in the dynamic view. 
To simplify the model, the user needs to switch between 
different views (static and dynamic) and maintain them 
synchronised. The synchronisation helps the user in 
identifying interesting relations in the structure (static 
view) and behaviour (dynamic view) of the system. As 
proposed by T. Systä [19], we group the participants of 
the dynamic views using the static information and we 
use the dynamic view to slice the static view to reduce its 
complexity. 

The use cases are also a mechanism for compressing the 
dynamic view. We can break the trace into a set of 
hierarchical use cases, which provide a logical partition of 
the software behaviour by functionality.  A use case is the 
ordered set of messages used to accomplish a software 
system or user level goal. A scenario is a contiguous 
sequence of messages that performs a concrete function 
but needs the context of a use case. A scenario can appear 
several times in the use case or others and contributes to 
build up and achieve the goal of the use cases. For 
instance, a user can ‘load a file’ (use case) in a tool, and 
the program executes many ‘read record’  calls (scenario), 
which uses some lower level calls. 

We can summarise the requirements in the following 
points: 

- Architecture and programming language independent 
approach. 

- Generation of high-level views of the structure and 
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behaviour. 

- Interactive manipulation and synchronisation of static 
and dynamic views. 

- Abstraction widely used to cope with system 
complexity (message and participant compression, 
hierarchical grouping) 

- Management of scenarios (and use cases). 

- Support for an iterative process of data analysis  

 

5 THE APPROACH 
Our technique aims at creating architectural views based 
on static and dynamic information. We are seeking two 
key improvements for the analysis of dynamic 
information: (1) an effective method for managing 
vertical and horizontal abstractions and, (2) the 
integration of the static and dynamic tools in the same RE 
environment. A major constraint is on the independence 
of the RE environment from the subject system. We aim 
at decoupling the system domain dependent information 
from the generic concepts of the RE environment in order 
to easily customise the environment according to any 
subject system. Data gathering phase is system 
dependent. 

We use the Rigi environment for the static visualisation 
of the system structure [17] with hierarchical typed 
graphs. Graphs can be customised according to the 
subject system with the Rigi’s concept of domain. Rigi is 
an open environment that can be easily extended using 
the Tcl/Tk language. We have extended Rigi to support 
the visualisation of dynamic data. Figure 1 shows the 
integration scheme. The MSC visualisation tool is able to 
exchange data with Rigi, reacting when static abstractions 
are performed and vice versa. The synchronisation of 
both views is essential because the user need to work on 
the multiple views at the same time. The data from the 
static and dynamic analysis are represented with Prolog 
facts. A set of Prolog propositions is used to process the 
data and generated the required format for Rigi and the 
MSC visualisation tool. 

The main features of the environment are: (1) the ability 
to perform horizontal and vertical abstraction on the 
dynamic view, (2) the integration with a static analysis 
tool and, (3) the support for the management of 
hierarchical use cases, (4) a scripting facility based on 
Tcl/Tk for customisation and batch processing. 
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Figure 1 Integration scheme of the MSC tool in Rigi. 

Figure 2 shows the different types of abstractions 
supported on the dynamic view. Diagram a) shows the 
initial MSC, diagram b) shows an horizontal abstraction 
over participants A and B, diagram c) shows a vertical 
abstraction over messages M1 to M4, and diagram d) 
shows the effect of both types of abstraction, resulting in 
a simplified and high-level MSC. 
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Figure 2. Horizontal and Vertical abstractions in 

MSC. 

In the MSC file format, we have implemented a support 
for the management of use cases. We need this feature to 
cope with the complexity and size of traces. The use cases 
provide a logical hierarchy for partitioning the long traces 
that we extract. Use cases can be used to describe HMSC 
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and the scenarios bMSC [4]. During the data-gathering 
phase, we organise the use cases in a tree hierarchy 
(nested use cases are possible) as shown in Figure 3.  The 
hierarchy is defined during the data gathering phase, 
inserting bookmarks in the trace. The use cases hierarchy 
can be used to slice the dynamic views and provides 
context information of the current scenario being 
analysed. The abstractions applied on one scenario are 
also reflected overamong the other scenarios in the 
hierarchy. 
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Figure 3. Three views of the Use Case hierarchy. 

6 AN EXAMPLE 
We demonstrate the approach with an example that is the 
simplification of a real case. The description follows the 
fours steps of the process described in Section 3. 

Architectural Concepts 
We start examining the architectural documentation in 
order to identify the architecturally significant concepts 
that build the system. The system is component based. 
Components represent computational units or system 
resource controllers and expose well-defined interfaces. 
The communication among the components is achieved 
with the exchange of asynchronous messages.  The 
operating system takes care of the delivery of the 
messages using a software bus. There are three primitives 
for registering on the bus, sending and receiving 
messages: 

register(ID) – primitive to register a component on the 
bus. 

send(dest, msg) – primitive for sending a message to dest. 

recv(src, msg) – primitive for retrieving a message from 
the component’s queue. 

When the components are initialised, they register 
themselves on the bus with a unique identifier that is 
statically assigned at compile time. The same identifier is 
used in the sending and receiving primitives. 

One key issue of the architects is to manage the 
organisation of the components so that they can 
collaborate to implement the system’s features. Each 
message exchange between two components creates a 
dependency that has to be taken into account by the 
architect. In a system with hundreds of components the 
dependency graph becomes rather complicated. For this 
task, the architects can find very useful to have a logical 
view that shows the organisation of the components in 
packages and their dependences and an execution view 
that shows how the components interact. To generate 
those views, we have to analyse the exchange of 
messages statically and dynamically. This is the focus of 
the next phases. 

Extraction of Static Information 
The extraction of the static information is carried out with 
a source code analyser that detects all the communication 
instances in the source code. The approach is similar to 
the one described in our previous work [17]. 

The output of the extraction is presented as a set of Prolog 
facts. Each fact defines a relationship between two 
elements of the model. In our case, we have created (1) 
the ‘register’ relationship between a component’s 
directory and its name on the software bus and (2) the 
‘message’ relationship among the sender, receiver and 
content of a message. Below there is a sample of the 
information extracted by the code analyser.  

register(‘/gui/voice’,’VOICE_CTRL’). 
m essage('VOICE_CTRL','PROTO COL','sel_prot'). 
m essage('VOICE_CTRL','PROTO COL','connect'). 
register(‘/gui/data’,’DATA_CTRL’). 
m essage('DATA_CTRL','PROTO COL','sel_prot'). 
register(‘/resource/protocol’,’PRO TOCOL’). 
m essage('PROTOCO L','RADIO','setup'). 
register(‘/gui/m akeCall’,’M AKE_CALL’). 
m essage('M AKE_CALL','DISPLAY','write'). 

For instance, the first line means that the directory 
‘/gui/voice’ contains the implementation of the 
component ‘VOICE_CTRL’. The second line means that 
the component ‘VOICE_CTRL’ sends a message to the 
component ‘PROTOCL’ and the message is ‘sel_prot’. 

Abstraction 
The extracted source code model is at a very low level of 
abstraction. The abstraction process can be divided in two 
steps: composition rules and view selection.  

Composition Rules 

This step concerns with adding the part-of relationships to 
the model. It is a crucial activity of the abstraction 
process because it creates a hierarchical structure in the 
model that simplifies its navigation. The composition 
rules specify how the source code elements are grouped 
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to form subsystems or more abstracted entities.  

Below there is an example in Prolog where we define four 
new components. The components are associated to the 
directory that contains its implementation. 

contain(‘Call’,X) :- register(‘/gui/voice’,X). 
contain(‘Call’,X) :- register(‘/gui/data’,X). 
contain(‘M essaging’,X) :- register(‘/gui/inst_m sg’,X). 
contain(‘M essaging’,X) :- register(‘/gui/em ail’,X). 
contain(‘Network’,X) :- register(‘/resource/protocol’,X). 

The previous components are then grouped in subsystems 
according to their functionality.  

contain(‘Services’,’Call’). 
contain(‘Services’,’Call’). 
contain(‘G UI’,’Services’). 
contain(‘G UI’,’Application’). 
contain(‘Resources’,’Display’). 
contain(‘Resources’,’Network’). 

View selection 

To define a view, we need (1) to select its representation 
format and (2) to define the set of relationships that have 
to be projected in it. We use graph-based representations 
for the static information and message sequence charts for 
the dynamic information  

To create the static view we need to compute the high 
level dependencies among the components. We represent 
the logical view with the typed oriented hierarchical 
graphs of Rigi. This is achieved by (1) defining a 
grouping relationships that describes the hierarchy, (2) 
defining the set of relationships of the graph, (3) 
compuing the transitive closure and (4) create the graph.  

Below there is the Prolog code that defines the grouping 
relationship and the relation relationship for our simple 
example. 

grouping(X,Y) :- contain(X,Y). 
relation(X,Y) :- m essage(X,Y). 

We can calculate the reflexive transitive closure with an 
auxiliary function trans defined below: 

trans(R,X,Y) :- P=..[R,X,Y], call(P). 
trans(R,X,Y) :- P=..[R,X,Link],call(P), trans(R,Link,Y). 
trans(_,X,X). 

We can then create the graph by defining a hierarchy 
relationship that is basically identical to the grouping 
relationship. The edges of the graph are obtained by the 
transitive closure. Below there is the Prolog code. 

hierachy(X,Y) :- grouping(X,Y). 
edge(X,Y):-tran(grouping,X,Item 1),tran(grouping,Y,Item 2), 

relation(Item 1, Item 2). 

In this simple example, we have not taken in 
consideration the management of the types of the nodes 

that is done in the real case. 

Visualisation. 
The logical view can be visualised with Rigi as a 
hierarchical graph. We can also export the graph from 
Rigi to the Venice. Venice allows us to show the logical 
view in the UML notation. We use the notation proposed 
in [18]. Figure 4 shows the logical view of the example. 
The packages have been created according to the 
hierarchy relationship. The edges show the high level 
dependencies that exist among the packages. The user can 
select the level of detail for the visualisation of the edges 
[20].  

 

Figure 4. The component view visualised with Venice. 

Extract dynamic information. 
The extraction of dynamic information is conducted by 
(1) instrumenting the source code, (2) executing a set of 
usage scenarios and (3) collecting the traces. The 
architectural concepts of the first phase drive us in the 
choice of the correct instrumentation of the system. In the 
example, we can trace all the calls to the ‘send’ primitive 
that are architecturally significant for our system.  

We use the ThirdEye [10] environment for instrumenting 
the code. In the example, we execute two scenarios in the 
system simulator. Each scenario is represented by a 
sequence of commands. The traces are then converted to 
Prolog facts. And example is given below. 

trace(’sc_start’,’M akeCall’,’’,’’,1). 
trace(’m sg’,’M AKE_CALL’,’DISPLAY’,’sel_num ’,2). 
trace(’m sg’,’M AKE_CALL’,’VO ICE_CTRL’,’setup’,3). 
trace(’m sg’,’VO ICE_CTRL’,’PRO TO CO L’,’sel_prot’,4). 
... 
trace(’m sg’,’VO ICE_CTRL’,’M AKE_CALL’,’callact’,14). 
trace(’sc_end’,’M akeCall’,’’,’’,15). 
trace(’sc_start’,’SendM ail’,’’,’’,16). 
trace(’m sg’,’SEND_M AIL’,’EM AIL’,’setup’,17). 
... 
trace(’m sg’,’PRO TO CO L’,’DATA_CTRL’,’ack’,29). 
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trace(’m sg’,’DATA_CTRL’,’EM AIL’,’con_active’,30). 
trace(’sc_end’,’SendM ail’,’’,’’,31). 

The ‘trace’ relationship contains the type of the trace, the 
sender, the receiver, a label and the time stamp. Two 
special events (‘sc_start’ and ‘sc_end’) delimit the begin 
and end of a scenario.  We elaborate the traces with 
Prolog propositions in order to apply the abstraction rules 
created during the static analysis. We plan to use Prolog 
also to separate the different scenarios and to detect 
patterns in the sequence chart. The results can be exported 
to the Message Sequence Chart visualiser. 

Navigating Static and Dynamic Views 
We present an example of navigation in the architectural 
model with both the static and dynamic views. Figure 5 
shows a graph-based representation of the logical view of 
Figure 4 in Rigi. The graph shows the two components at 
the highest level of abstraction: ‘GUI’ and ‘Resources’. 
The process (or execution) view is visualised in the MSC 
Visualiser as shown in Figure 6. The MSC is shown at the 
same level of abstraction as the logical view in Rigi. 
Therefore, only the two high level participants and 
messages are visualised. The messages that are exchanged 
among the nodes contained in the two participants are 
hidden. This reduces the objects to be visualised and 
simplifies the understanding of the MSC.  

The user can navigate the two views by expanding or 
collapsing the nodes in the same style like in Rigi. The 
system takes care of maintaining the two views 
synchronised. We imagine the user wants to investigate 
the details of the ‘GUI’ component. The user can expand 
the GUI node for example in the logical view, as shown 
in Figure 7. The same effect is propagated to the MSC, as 
shown in Figure 8. The messages between the two 
components (‘Services’ and ‘Application’) of the ‘GUI’ 
component are visible. The same result can be achieved 
by selecting and expanding a node in the MSC.  

The user can also apply vertical abstractions in order to 
hide a set of messages. In Figure 9, the user selects a set 
of messages. The selection can be either contiguous or 
not. The user can then group together the messages in one 
single message that represents them. In case of un-
contiguous messages, multiple groups are created. The 
result of the grouping is shown in Figure 10. Figure 11 
and Figure 12 show the views at a lower level of 
abstraction where the two low level elements 
(‘MAKE_CALL’ and ‘SEND_MAIL’) are visible. 

The user can also follow a bottom-up approach by 
starting with a raw model and by grouping the nodes 
towards higher levels of abstraction. The system takes 
care of keeping the views synchronised. 

7 CONCLUSIONS AND FUTURE WORK 
Understanding a software architecture requires both static 

and dynamic information to be available and presented in 
different views. Abstraction plays a key role in reducing 
the complexity of the models in different dimensions 
(system structure, organisation of scenarios, participants 
and messages in the MSC).  

We have highlighted that the architectural views have to 
be maintained synchronised in order to present the static 
and dynamic views at the same level of abstraction. 

The end-user customisation represents a powerful 
mechanism to tailor the tools for the specific subject 
system needs. It is an improvement to cope with the wide 
variety of programming languages. Moreover, it makes 
easy to introduce new features, to aid the process of 
abstracting and understanding, like dynamic metrics 
calculation and participants clustering algorithms [1]. 

The use case hierarchy allows the user to select the 
starting point of the analysis, either from a bottom-up or a 
top-down approach.  

The use case hierarchy allows the user to focus into more 
concrete use cases or scenarios. The hierarchy could be 
used to generate other static-dynamic representations, as 
in [11], or collaboration diagrams, at different levels of 
architecture abstraction. As well, it is useful for program 
comprehension, to isolate smaller scenarios, discover 
errors or analyse concrete behaviour. 

Our future work will focus on creating a better 
management for the scenarios and defining a technique 
for detecting interaction patterns in the MSC using 
Prolog. 
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Figure 5. The component view in Rigi. 
 

 
Figure 6. The MSC in the MSC visualisarer. 

 
 

 
 
 

Figure 7. Expand node.  
 

Figure 8. Expand node. 
 

Figure 9. Selection in MSC. 

 
 
 
 
 
 
 
 
 
 

Figure 10. Grouping. 

Figure 11. Low level. 
 

Figure 12. Low level details in MSC. 

 
 
 
 


