
Proceedings of the 9th Working Conference on Reverse Engineering (WCRE 2002), IEEE Computer Society
Press, 29 Oct – 1 Nov, Richmond, Virginia, 2002.

Generation of Architectural Documentation using XML

Claudio Riva and Yaojin Yang
Nokia Research Center

Software Architecture Group
P.O. Box 407, FIN-00045 NOKIA GROUP

Tel.: +358 50 483 7403, Fax.: +358 7180 36308
{claudio.riva | yang.yaojin}@nokia.com

Abstract

Documentation generation is the process of creating the
system documentation at different levels of abstraction
from the source code for a legacy system. The main goal
is to help the stakeholders to understand the system with
representations at the appropriate abstraction level. We
follow an architecture reconstruction method to create an
architectural model of the system and we use a
documentation generation technique to re-document its
architecture. In this article, we present our XML based
approach for generating the architectural documentation
of a software system.

Keywords: Documentation generation, XML, reverse
engineering, XSLT

1 INTRODUCTION
The software documentation is an essential part of a
software system. Information that describes the subject
software system in any kind of format and at any level of
abstraction can be considered documentation.
Documentation helps the stakeholders to understand and
to maintain the system. The source code is the most
detailed and reliable documentation, but usually it is not
feasible and necessary to comprehend all the details in it.
If we can create an abstract view of the source code, then
we have the capability of zooming on specific details
starting from the top level [19].

Documentation generation is one of the key activities of
system reverse engineering that is the process of
analyzing a subject system to identify the system's
components and their interrelationships and create
representations of the system in another form or at a
higher level of abstraction [3]. A. van Deursen et al.
indicate that a flexible documentation should adhere to
four criteria:

• Documentation should be available on different
levels of abstraction.

• Documentation users must be able to move smoothly
from one level of abstraction to another, without
loosing their position in the documentation.

• The different levels of abstraction must be
meaningful for the intended documentation users.

• The documentation needs to be consistent with the
source code during the system lifecycle.

In our previous works [16][2] [15], we have proposed an
architecture reconstruction method that allows us to re-
construct the architecture of a software system (with static
and dynamic views) from the implementation. The output
of the reconstruction is a high level model that describes
different architectural aspects of the system (such as the
component view, the task view and the feature view). We
use the output of the reconstruction to re-document the
architecture of the system.

In this article, we describe our approach for the
generation of the architectural documents. The process
consists of four phases: concept definition (to identify the
architecturally relevant concepts that have to be presented
in the documentation and their mappings to the
implementation), documentation extraction (to extract the
elements of the documentation by a lexical and
syntactical analysis of the source code), documentation
abstraction (to classify and organise the documentation in
a hierarchical format and derive more abstracted views)
and documentation presentation (to present the
documents in a human readable format). The main trigger
of our work is to enable the software architects to re-
document the architectures of large software systems, as
presented in our previous work [15].

In Section 3, we give an overview of the architecture
reconstruction method. In Section 4, we describe our
requirements for the documentation of a software
architecture. In Section 5, we introduce key technologies
that we use in our approach. In Section 6 and 7, we
respectively describe our approach and the supporting
environment. In Section 8, we demonstrate the approach
with a simple example. In Section 9, we make some
observations on the approach and in Section 10 we draw
the final conclusions.

2 RELATED WORK
In our previous work, we have related our work with
other research in the field of architecture reconstruction
[15] and dynamic analysis [2]. In this section, we report
the major shortcomings that we have detected concerning
the task of architecture re-documentation.

Kazman et al. propose an iterative reconstruction process
based on the Dali workbench [8][7]. Dali allows the user
to create a source code model in a SQL database. The
user can then base the abstraction process (mainly a
grouping activity) on a set of queries executed in the
database. The reconstructed architecture is visualised
using hierarchical graphs in Rigi.

Finnigan et al. [4] propose the Software Bookshelf that is
a collection of tools for generating software architectures
from program sources and presenting them in a Java-
based web user interface. The goal is to keep the
architectural documentation up to date. The tool has been
used to extract the software architecture of Linux
operating system [1]. One key feature is the web interface
that allows the architects to publish the architectural
diagrams on the intranet. The major difference between
PBS and our approach is that (1) we generate UML
diagrams that typically used by the system designers and
(2) our environment is language and domain independent.

A. van Deursen et al. [19] propose a framework to
generate documentation from source code level. It allows
the user to create documentation at different abstraction
levels. This framework includes three phases of source
code analysis, extracting documentation and presenting
documentation. Source code analysis provides several
means for indicating constructs of interest in the source
code. Extracting documentation is the phase to extract
documentation concepts according to different abstraction
levels. Presenting documentation is to build the interface
between user and the documentation. Our approach refers
to this framework, and further emphasises documentation
abstraction by importing an architecture reconstruction
environment to achieve architectural documentation
generation. At the same time, our approach indicates an
explicit way of how to integrate a structural data
environment into documentation generation by using

GXL technique.

Nentwitch et al. [12] have proposed a tool for publishing
UML documents on the web. The tool does not address
the specific needs of re-documentation but is based on
open standards like XML, XMI, UML and SVG for
visualising UML diagrams in a web browser.

Gail et al. [11] propose a reconstruction technique based
on the reflexion models. The user starts with a structural
high-level view model that is iteratively refined to rapidly
gain knowledge about the source code. The technique is
based on the definition of a set of mappings between the
source code and the high-level concepts. Our architecture
reconstruction method generalises this idea enabling the
user to define any kind of mappings or transformation of
the source code model.

3 ARCHITECTURE RECONSTRUCTION
The description of the software architecture should
communicate the essential decisions that have been taken
during the design of the software system [13]. The
decisions are about the concepts of the system (the way
we think of a system, its architectural style), the
architecturally significant requirements (the major
concerns that have to be addressed by a proper software
architecture), the structure (the components and their
relationships at the right level of abstraction) and the
texture (design decisions at the implementation level that
are architecturally relevant, such as design patterns and
policies). Multiple views (such as the “4+1 model”
proposed by Kruchten [9] and the architectural views
proposed by Hofemeister [6]) are a practical way to
effectively communicate the different aspects (and
concerns) of the software architecture. In both the
methods, static and dynamic aspects of the architecture
are addressed.

Architecture reconstruction (or reverse architecting)
concerns with the task of recovering the past design
decisions that have been taken during the development of
a system and to present them through multiple
architectural views. It is a reverse engineering activity
that has to infer the architectural rationale from the
available artefacts created by the original developers
(such as source code, design diagrams, user guides). The
natural evolution of a software system also introduces
new aspects that a reconstruction process can unveil.

The output of the reconstruction is a set of architectural
views focused on particular concerns. In our experience,
we have found useful to deliver the following
architectural views:

- Conceptual view: describing the key architectural
concepts that build the system. The instances of
these concepts are presented in the other views.

- Component view: describing the major components,
their interfaces and their logical relationships.

- Development view: describing the organisation of
the source code files and their relationships (for
example, include dependencies).

- Task view: describing the task allocation of the
architectural entities and showing the inter task
communications.

- Feature view: describing the run-time
implementation of the features at a high level of
abstraction.

The views are based on static aspects (captured without
running the system) and dynamic aspects (concerning
with the run-time behaviour). They are both necessary for
the architectural description and they have to be
adequately reverse engineering from the implementation.

We stress the point that only the correct choice of the
architectural concepts to examine can deliver a
meaningful high-level model to the architects. The
architectural concepts are first class entities in the
reconstruction process from the very early stages.

In our approach [16][2], we follow a four-step iterative
process: (1) definition of architectural concepts, (2)
extraction, (3) abstraction and (4) presentation. The goal
of the first phase is to recover and clarify the
architecturally significant concepts that build the system
(building blocks and communication infrastructure).
These concepts represent the way developers think of a
system and they should become the terminology of the
reconstruction process (for examples, applications,
servers and software busses for a distributed system,
while processes, queues, shared memories might be used
for an operating system). The second phase builds a
model of the system by extracting the relevant
information from the implementation. The entities of the
model are instances of the concepts identified in the
previous phase. A correct choice of the concepts will
ensure that the model is filled with entities at the right
level of abstraction. For the static information, we rely on
the source code and the system documentation. For the
dynamic data, we instrument the system and trace its
execution by simulation. In the third phase, we enrich the
model with domain specific knowledge that is necessary
to create a high level view of the architecture. This is a
reasoning activity where we need to infer new logical and
more abstracted relationships. In the last phase, we
present the architectural views with effective
visualisations that allow us to communicate the
architectural information to the architects: hierarchical
oriented graphs, web documents, UML, logical diagrams,
message sequence charts and collaboration diagrams.

4 ARCHITECTURAL DOCUMENTATION
The description of the software architecture can be
accomplished only by using a clear notation, which is
semantically well defined and easy to understand by all
stakeholders. The currently available architectural
description languages (ADLs) have not spread in industry
mainly because they are not generic enough, are not
standardized and are poorly supported by tools. Several
ADLs support descriptions for components, connectors,
configurations, and/or other aspects of software
architecture [10]. These ADLs have demonstrated various
research ideas and they have limited scope. Most of the
ADLs can only be used to describe one particular
architectural view and have to be augmented with other
modelling mechanisms. The big gap from the design and
implementation languages used in software development
together with the lack of good supporting tools have
limited the use of ADLs in industry.

UML as a general-purpose design notation is an
alternative to the current ADLs. UML is a standard now
and most of our designers can understand it and use it.
UML descriptions of software architecture not only
provide a standard definition of the system structure and
system terminology, but also facilitate consistent and
broader understanding of the architecture and enable
more extensive tool support for architecture design.

UML is a standard, but its current semantics fails to meet
the criteria stated above: it is weak at describing
interfaces, the abstractions it provides are not univocal
and it provides little support for modelling architecturally
significant information. UML is also not suitable for
modelling reverse engineered architectural models: the
notation does not allow to model all needed
implementation concepts, and does not offer other support
for typification than extension. UML as such is not an
ideal language for describing the basic building blocks of
software architecture (components, connectors and
architectural configurations).

In [17] we have highlighted that architecture modelling
demands a more precise notation, with improved support
for interface modelling, a limited number of possible
relationships and more rigorous semantics. For example,
we have identified the following UML elements
necessary for modelling the component view: package,
component, interface, generalisation, dependency and
generalization.

This situation poses several challenges when we need to
present the reconstructed architecture to the developers.
We do believe that the graph-based representations well
suit the needs of the architecture reconstruction process
but those representations are not very effective for the
task of re-documentating the architecture. We have

identified a set of key requirements that have to be
satisfied:

- the format has to be to be simple to use and generally
understood by developers. Graph based representations
(e.g. the Rigi graphs) are not so intuitive for non-experts.
The UML standard is the best candidate because it is
universally used and understood, although its semantics is
not precise.

- the internal Web is widely used for distributing
documentation in the organisation. This suggests that the
software architecture diagrams can be published on the
web so that developers can search and browse documents
with the web browser (similarly to the approach of the
Personal Bookshelf [4])

- software architecture concerns also with the
organisation and the classification of the system artefacts.
Therefore, we need an elegant interface for showing the
different categories (e.g. subsystems) and views
(architectural views).

- the re-documentation process has to be language and
domain independent similarly to our architecture
reconstruction method.

5 XML, GXL AND XSLT
XML (Extensible Mark-up Language) [21] is a mark-up
language for documenting structured information. An
XML document, which is a plain text file, contains tags,
values, and the relationships between those tags. XML is
an ideal storage format for software documentation. This
language has native support for structured information,
which exactly software documentation is. Therefore, in an
XML document, XML tags can be used to identify the
software concepts, XML values can be used to record the
facts of each concept, and relationships between those
tags can be used to present the links between different
concepts. XML also provides an independent platform for
data exchange, because it does not adhere to any specific
data format. The same XML file can be accepted by any
XML supported application and can also be converted to
different data formats using standard parsers or a
transform language. Documentation generation can
benefit from this feature to easily accomplish that the
same content but has different presentations, so the
efficiency of documentation generation is really
improved. Moreover, XML is a plain text format, which
is very easy to create.

GXL (Graph eXchange Language) [5] is a standard
exchange format for graphs. It has been designed to
support the interoperability between graph-based tools
and in particular reverse engineering tools. GXL allows
us to store hierarchical attributed typed graphs where
nodes can represent concepts of documentation and edges

can represent the relationships between these concepts.

XSLT (Extensible Stylesheet Language Transformation)
[23] is a language for transforming XML documents into
other XML documents or other formats. The
transformation is achieved by defining a set of templates
that are matched in the source XML tree and instantiated
in the result tree. XSLT provides us with a simple and
efficient way for processing XML documents.

6 OVERVIEW OF THE APPROACH
Our approach for documentation generation consists of
two phases. In the first phase (consisting of concept
definition, documentation extraction and documentation
abstraction), we extract an architectural model of the
system that we want to re-document. In the second phase
(presentation), we generate its documentation in different
formats.

Concept definition. The first step concerns with defining
the architectural concepts that have to be presented in the
documentation. This requires understanding the
stakeholders’ interests in the architectural documentation.
Discussions with the experts (architects, designers,
programmers and testers) and the existing documents
about the system are the main sources of information. The
output of this phase is the definition of the concepts that
we be described in the documentation and the mappings
of these concepts to the implementation constructs.

Documentation extraction. We identify the
implementation constructs for each concept that we have
previously defined. We conduct (1) a lexical analysis for
the concepts that are implemented semantically using
existing tools (e.g. SourceNavigator [14]) and (2) a
syntactical analysis to recover the concepts that have a
standard syntax in implementation using regular
expressions (e.g. Perl scripts). The extracted information
is refined in a set of relational facts that are stored in a
GXL file.

Documentation abstraction. The abstraction phase aims
at creating a high level, architecturally significant
documentation of the system architecture. This is mainly
achieved by inferring new information, classifying the
elements of the documentation in high-level categories
and creating the different architectural views. The
concepts that do not have a direct mapping to the
implementation have to be identified during this phase.
The resulting abstraction rules are mainly derived by the
existing design documents and by interviews with the
stakeholders. We represent the relational data about the
architecture and the abstraction rules in terms of Prolog
facts as we have presented in [15]. The gruoping rules are
kept in separate files and are manually maintained by the
architects. This procedure relies mainly on human
experience and manual reasoning with the aid of

particular tools. Documentation abstraction is iterated
until an appropriate level of abstraction has been reached.

Documentation presentation. The goal of this phase is
to present the documentation in a human-readable format
containing text and graphics. The main goal is to provide
a user-friendly interface to the documentation that allows
the users to navigate among the different levels of
abstraction and the different parts of the documentation.
The documentation is presented according to the different
architectural views. To support the navigation of the
documentation we use hyperlinks.

7 THE ENVIRONMENT
To support the architecture reconstruction and re-
documentation process, we have integrated a set of tools
in a reverse engineering environment called Nimeta [15]
[2]. The architectural information is stored in a GXL
repository that acts as a central storage point. The user
interface is based on the Rigi environment [18] and we
programmed in Tcl/Tk our own extensions. We have also

integrated a Prolog engine to support the abstraction
process [15]. XSLT [23] scripts are used for extracting
the data from the GXL repository and converting to
different formats. The generation of the architectural
documentation is carried out by a set of XSLT scripts that
convert the GXL data to the Visio [20] and HTML
formats. The Figure 1 depicts the architecture of the
environment.

The reconstruction environment supports two different
formats of visualisation: Visio diagrams and HTML
pages.

Visio [20] is a drawing tool that is widely used for
creating UML diagrams. It supports XML and can also
generate an HTML version of the diagrams. We use Visio
to create UML-like diagrams, to calculate the layout and
to generate the HTML version of the diagram. The Visio
XML file is generated by a Tcl script that traverses the
Rigi graph and calculates the shape, position and size of
the UML elements. The script also organises the Visio

Web BrowserNimeta

GXL

Rigi +
extensions

Source Code
Analysers XSLT

Visio

Figure 1. The architecture of the environment.

<xsl:template match="gxl/graph/node">
<xsl:text>level Root </xsl:text>
<xsl:value-of select="attr[@name="name"]/string"/>
<xsl:text>
</xsl:text>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="node/graph/node">

<xsl:text>level </xsl:text>
<xsl:value-of select="../../attr[@name="name"]/string"/>
<xsl:text> </xsl:text>
<xsl:value-of select="attr[@name="name"]/string"/>
<xsl:text>
</xsl:text>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="edge">
<xsl:value-of select=" attr[@name="type"]/string"/>
<xsl:text> </xsl:text>
<xsl:value-of select="//node[@id=@from]/attr[@name="name"]/string"/>
<xsl:text> </xsl:text>
<xsl:value-of select="//node[@id=@to]/attr[@name="name"]/string"/>
<xsl:text>
</xsl:text>
</xsl:template>

Figure 2. The XSLT script to convert from GXL to RSF.

diagrams in a set of different pages with hyperlinks
according to the Rigi hierarchical structure. One major
benefit of the Visio diagram is the possibility of
visualising nested UML packages at any level of details.

The HTML pages are used to browse the architectural
model in a textual format. The web interface contains two
pages. The left page contains the menu for navigating
through the system hierarchy. The user can start from the
top level view of the model and navigate the hierarchy by
opening and closing the cascading menus. The right page
contains the details about the artefacts that have been
selected in the left page. The page contains a brief
description of the element (e.g. its name and its time) and
references to the other elements that have some
dependencies with it. Hyperlinks allow the user to
navigate through the chain of dependencies.

We have used XSLT to support the conversions of the
GXL data to various formats like RSF, Prolog, HTML
and DOT. The XSLT scripts for generating the HTML
pages are automatically generated by a Tcl script
according to the Rigi domain of the graph. Figure 2
shows the XSLT script for converting the GXL file to
RSF. Figure 3 shows the automatically generated XSLT
script to generate the HTML pages for a particular Rigi
domain.

The main features of the environment are: (1) the ability
to generate UML nested diagrams in Visio and in HTML
with hyperlinks among the different views, (2) the
generation of web pages with hyperlinks to support the
textual navigation of the architectural documentation, (3)
the configuration of the process according to the
architectural concepts of the system and (4) the possibility
of generating high-level documentation of the system.

One element is that the process and the environment is
totally independent from the language and the underlying
architecture of the system. It is independent from the
types of artefacts or dependencies that we have defined in
the first phase.

8 AN EXAMPLE
We demonstrate the approach with a simple example
based on the system HAVA. HAVA is a message
sequence chart visualiser written in Tcl/Tk and consists of
about three thousands lines of code and 230 procedures.

Concept definition
Initially, we discuss with the developer of HAVA the
existing design documents and his opinion about the
HAVA’s architecture. The main computational units of
HAVA are Tcl procedures, organised in a set of
subsystems with a particular functionality. The developer
draws in a diagram his opinion about the current HAVA’s
architecture. The diagram is visualised in Figure 4 and
represents the intended architecture of HAVA where the
highest-level elements are shown. In this simple case, we
identify three architecturally relevant concepts: the Tcl
procedures, the subsystems and the procedure calls.

GUI

DATA STRUC.

HASH TREE

PATTERN

DRAWING

LAYOUT

EXECUTION

FILE

COMMANDS

Figure 4. The intended architecture of HAVA.

<xsl:template match="node" mode="detail">
 <xsl:if test="attr[@name='type']/string='Function'">

 <!--print general information-->
 <center><h3><xsl:value-of select="attr[@name='name']/string"/></h3></center>
 <xsl:for-each select="attr"> <p><xsl:value-of select="@name"/>:<xsl:value-of select="string"/></p>
 </xsl:for-each>
 <p>Diagram</p>

 <!--the end of printing general information-->
 <xsl:variable name="currentNode_id"><xsl:value-of select="@id"/></xsl:variable>
 <xsl:call-template name="print_edge_from"> <xsl:with-param name="node_id" select="$currentNode_id"/>
 </xsl:call-template>
 <xsl:call-template name="print_edge_to"> <xsl:with-param name="node_id" select="$currentNode_id"/>
 </xsl:call-template>
 </xsl:if>
 <xsl:apply-templates select="graph/node" mode="detail"/>
 </xsl:template>

Figure 3. A piece of the automatically generated XSLT script to generate the HTML pages.

Documentation Extraction
We use SourceNavigator to parse the source code and to
extract the source code model, which represent a low
level documentation of the system containing only the Tcl
procedures. We point out that in this simple case
SourceNavigator is enough to obtain all necessary
information. In real cases, we often need to develop our
own parsers to extract additional information. The
extracted facts are stored in GXL format.

Documentation Abstraction
We use the Nimeta reconstruction environment to create
an architectural model of HAVA. With the help of the
developer we define a set of rules that create the correct
grouping of functions in the subsystems. The grouping
rules are expressed as Prolog propositions as we have
described in [15]. We use the environment to apply the
grouping rules to the source code model and to save the
results in a GXL file. Below there is a segment of the
resulting GXL file containing also the abstractions:

<node id="n_1">
 <attr name="name"> <string>GUI</string> </attr>
 <attr name="type"> <string>System</string> </attr>
 <graph id="g_1" edgeids="true">
 <node id="n_2">
 <attr name="name">
 <string>GUI_CORE</string>
 </attr>
 <attr name="type">
 <string>Component</string>
 </attr>
 <graph id="g_2" edgeids="true">
 <node id="n_3">
 <attr name="name">
 <string>gui_areaMessages()</string>
 </attr>
 <attr name="type">
 <string>Function</string>
 </attr>
 </node>
 …
 </graph>
 </node>
 …
 </graph>
 </node>

The node elements present the instances of the
architectural concepts. The graph elements group node
instances that belong to the same subsystem. GXL allows
us to store the documentation elements and their
hierarchical positions.

Documentation presentation
For the HAVA case, we have generated the component
view of its architecture. The component view shows the
main subsystems and the high level dependencies. The
Figure 6 shows the component view in UML format. The
diagram has been generated in HTML format using Visio.

The nested UML packages show only one level of nesting
but we can visualised a user-defined level of nesting.
Anyway, we do believe that two or three levels of nesting
are sufficient for real cases.

We can note that in the reverse engineered view there are
many differences from the intended architecture drawn in
Figure 4. For example, the “FILE” component depends on
the “DATA_STRUCTURES” component, while the
developer did not originally want this dependency. In the
intended design, the “EXECUTION” component should
represent the central element of the system but this is far
from the reality.

In Figure 5, the user can navigate the HTML by clicking
with the pointer on the UML elements. The navigation
allows the user to show more details about the diagram.
For example, the Figure 6 shows the details of the
subsystem “GUI”.

The Figure 5 shows the component view of the HAVA
architecture in HTML format. The left panel shows the
top-level view of the HAVA component view. The user
can select a particular subsystem to get more details that
are visualised in the right pane. The user can also open
the cascade menu of a subsystem to show the elements
contained in it.

9 OBSERVATIONS
The overall performance of the approach is satisfying. We
can store all the reverse engineered documents in the
GXL file and we can use XSLT to convert the data to
other formats in a very efficient way. Although, we
currently generate the Visio diagrams directly from Rigi,
XSLT is a candidate for replacing Rigi in this process.

After using the documentation, we find it meets the first
three criteria of a flexible documentation mentioned in the
Section 1. We provide the information at different
abstraction levels and the user is able to move smoothly
from one level of abstraction to another, without loosing
his current position; the different levels of abstraction are
meaningful for the users. We also support the last
criterion about the consistency with the code because our
process is fully automated and we can re-apply at each
new build of the system. Furthermore, the documentation
offers various presentation formats for the different types
of users. The usage of documentation is enriched.

10 CONCLUSIONS AND FUTURE WORK
In this article, we have described our GXL based
approach to generate architectural documentation. The
approach consists of two phases: architecture
reconstruction and architecture re-documentation. The
architecture reconstruction is the process of building
architectural model and views; the architecture re-
documentation is the process of how to present those

views. We demonstrate our approach with a simple
example and derived basic observations.

Our approach is flexible and satisfies the essential
requirements for the task of architectural re-
documentation that is simple, various, meaningful and
independent and provides consistency with the source
code. This has been achieved by adding links between
source code and the documentation.

Our approach takes advantage of GXL, a sub-language of
XML, which makes the approach more easy and efficient
to generate various presentations. HTML and Visio
samples are showed in this paper. Furthermore, we plan
to investigate other formats like SVG and VML for the
generation of software diagrams.

11 REFERENCES
1. Bowman T., Holt R. C., and Brewster N. V., Linux as

a Case Study: Its Extracted Software Architecture,
Proc. of the International Conference on Software
Engineering (ICSE '99), Los Angeles, May 16-
22,1999.

2. C. Riva and J. V. Rodriguez, Combining Static and
Dynamic Views for Architecture Reconstruction,
Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering (CSMR
2002), IEEE Computer Society Press, 11-13 March
2002 in Budapest, Hungary.

3. Chikofsky E. J. and Cross J. H. II, Reverse
Engineering and Design Recovery: A Taxonomy,
IEEE Software, 7(1): 13-17, 1990

4. Finnigan P.J., Holt R.C., Kalas I., Kerr S.,
Kontogiannis K., Müller H.A., Mylopoulos J.,
Perelgut S.G., Stanley M., Wong K., The software
bookshelf, IBM Systems Journal, 36(4), October
1997, pp.564-593.

5. Graph eXchange Language, GXL, version 1.0,
http://www.gupro.de/GXL

6. Hofmeister C., Nord R.L. and Soni D., Describing
Software Architecture with UML, Proc. of the 1st
Working IFIP Conference on Software Architecture,
Kluwer Academic Publishers, 1999.

7. Kazman R., O'Brien L. and Verhoef C., Architecture
Reconstruction Guidelines, Carnegie Mellon
University, Software Engineering Institute report
number CMU/SEI-2001-TR-026.

8. Kazman R., Tool Support for Architecture Analysis
and Design, Joint Proceedings of the SIGSOFT '96
Workshops (ISAW-2), ACM, 1996, pp. 94-97.

9. Kruchten P.B., The 4+1 View Model of architecture,
IEEE Software, 12(6):42-50, 1995.

10 Medvidovic N. and Taylor R.N., A Classification and
Comparison Framwork for Software Architecture
Description languages, IEEE Transactions on
Software Engineering, Vol.26, No.1, January 2000.

11. Murphy G. C. and Notkin D., Reengineering with
Relfextion Models: A Case Study, IEEE Software,
1997.

12. Nentwich C., Emmerich W., Finkelstein A. and
Zisman A., BOX: Browsing Objects in XML.
Software Practice and Experience 30(15):1661-1676.
2000.

13. Ran A., “ARES Conceptual Framework for Software
Architecture” in M. Jazayeri, A. Ran, F. van der
Linden (eds.), Software Architecture for Product
Families Principles and Practice, Addison Wesley,
2000.

14. RedHat Source Navigator,
http://sources.redhat.com/sourcenav/

15. Riva C., Architecture Reconstruction in Practice, IFIP
Working Conference on Software Architecture
(WICSA 2002), August 25-30, Montreal, 2002

16. Riva C., Reverse Architecting: an Industrial
Experience Report, Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE2000),
Brisbane, Australia, 23-25 November, 2000.

17. Riva C., Xu J. and Maccari A., Architecting and
Reverse Architecting in UML, Workshop on
Describing Software Architecture with UML,
International Conference on Software Engineering
2001 (ICSE), Toronto, May 2001.

18. Tilley S. R., Wong K., Storey M.-A. D., and Müller
H. A., Programmable reverse engineering,
International Journal of Software Engineering and
Knowledge Engineering, pages 501-520, December
1994. Rigi: a visual tool for understanding legacy
systems, University of Victoria,
http://www.rigi.csc.uvic.ca/

19. van Deursen A. and Kuipers T., "Building
Documentation Generators", Proceedings of the
International Conference on Software Maintenance
(ICSM '99), 1999

20. Visio 2002, http://www.microsoft.com/office/visio/

21. XML, The Extensible Markup Language, W3C
Recommendation, 2nd edition 6 October 2002,
http://www.w3.org/XML/

23. XSLT, The Extensible Stylesheet Language
Tranformation, W3C Recommendation 16 November
1999,http://www.w3.org/TR/xslt

Figure 5. The top level view of HAVA (Visio UML diagrams in HTML).

Figure 6. The GUI subsystem of HAVA.

