
Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

An Open Visualization Toolkit for
Reverse Architecting

Alexandru Telea

Eindhoven University of Technology
Department of Mathematics and Computer Science,

The Netherlands
alext@win.tue.nl

Alessandro Maccari and Claudio Riva
Nokia Research Center

Software Architecture Group
P.O. Box 407, FIN-00045 NOKIA GROUP

{alessandro.maccari | claudio.riva}@nokia.com

Abstract

Maintenance and evolution of complex software systems
(such as large telecom embedded devices) involve
activities such as reverse engineering (RE) and software
visualization. Although several RE tools exist, we found
their architecture hard to adapt to the domain specific
requirements posed by our current practice in Nokia. In
this paper, we present an open architecture which allows
easy prototyping of RE data exploration and visualization
scenarios for a large range of domain models. We pay
special attention to the visual and interactive
requirements of the reverse engineering process. This
article describes the basic architecture of our toolkit,
compares it to the existing RE environments and present
several visualizations taken from real cases.

Keywords
Reverse Engineering, Architecture Reconstruction,
Software Visualization and RE tools.

1 INTRODUCTION
Reverse engineering (RE) is an essential part of the
maintenance and evolution process of complex software
systems. It may involve several tasks, such as program
analysis, model capture and analysis, knowledge
discovery and re-documentation. Reverse architecting is
an extension of reverse engineering that also includes
tasks such as abstraction of reverse engineering models
and architecture recovery.
Reverse architecting (explained to some degree of detail
in section 2) aims at extracting high level architectural
models of the system. The models are typically extracted
from the code and rendered at a higher level of
abstraction in order to highlight the architectural structure
[10] of the software system. The model thereby obtained
must be rendered in a graphical form in order to give a
user-visible representation of the architectural artifacts.
This step is known as visualization, and can be performed
in various manners, such as graphical navigable views, at
different levels of detail.

Several tools support selected RE tasks by providing
automatic and user-driven data extraction and visual data
presentation [21], [7], [2]. In practice, attempts to reverse
engineer large systems usually reach functional and/or
structural limitations of such RE tools. A typical example
of such limitations is the inability of most tools to display
very large numbers of nodes and arcs.
Other tools focus on visualization, but usually offer little
support for program analysis. They also do not integrate
well with program analysis tools. In comparison with
scientific visualization (SciViz), where established
generic system architectures and implementations are
now common, most RE tools are still too narrowly
specialized, and are inadequate for reverse architecting
(which implies easy integration between program analysis
and visualization tools).
To address the above problems, we propose an open
software toolkit for RE tools. The toolkit we present
accommodates a large range of RE data types, operations,
and application scenarios. Subsequently, we present
examples of constructing RE exploration and
visualization applications taken from industrial case
studies. Section 2 summarizes the reverse architecting
process and elaborates on how the existing software tools
support it in practice. Section 3 introduces the
architecture of the toolkit, while sections 4 and 5 present
the core architecture of the tool (respectively, data model
and back-end). Section 6 shows an end-user view of our
tool. Section 7 illustrates the application of the tool to
analyze the concrete data taken from industrial case
studies. We conclude the paper with directions for future
research in section 8.

2 REVERSE ENGINEERING OVERVIEW
In [13] and [12], we have proposed an architecture
recovery method based on a four-step reverse engineering
process: definition of architectural concepts (to select the
architectural elements of the recovery), extraction (to
capture a low level model of the system), abstraction (to
inject domain knowledge in the model) and visualization
(to present the architectural model with multiple views).

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

Visualization plays an important role for presenting the
architectural model and to allow the user to navigate the
model, to generate new views, and to interact during the
abstraction phase. We can refine the RE tasks into the
following five generic operations that a RE tool should
support:

1. Extract the low-level model from the artefacts of the
system (like the source code). This is achieved by
external code analysers that typically offer APIs to
access the internal symbol table (such as Source
Navigator [11]).

2. Refine the low level model in order to emphasize the
user sensitive information.

3. Aggregate the extracted artefacts into a hierarchical
model according to the domain knowledge.

4. Measure the quality of the model with computed
norms or calculate particular software metrics. If
needed re-execute the aggregation differently

5. Select a sub-hierarchy of the model to focus the
analysis on.

6. Visualise the data, e.g. by laying out the graph with a
particular algorithm.

This process is applied iteratively and the tasks from 2 to
6 can take place in any order. Typically, the user tries to
visualise the initial low-level model to get an overview of
the graph. Then, he/she can apply some aggregations,
measure its quality, re-visualise the graph. Once the high-
level model has been generated the user needs to navigate
it by creating multiple views of the same data set.

In most cases, the operations of aggregation, selection,
filtering, lay out and visualization are the most important
from the task of examining the extracted model. In our
previous work [13] and [12], we have based our
visualization on the Rigi environment [21] and extended
it to support the visualization of Message Sequence
Charts (MSCs) for dynamic analysis. Rigi satisfies most
of our needs but it is not flexible enough in terms of
visualization. We have found Rigi to be useful for
creating a hierarchical model by aggregating nodes,
navigating the hierarchical graphs, filtering according to
user selection or entity types and creating multiple
synchronised views. We have also made use of the
domain paradigm that allows us to define the types of
nodes/edges, the simple RSF input and the Tcl scripting
that allows to customise the environment. However, Rigi
lacks modern and robust visualization techniques: the
selection of sub graphs is not well supported, we can
specify only one containment relationships (while the
users often need to aggregate and visualise the graph
according to different part-of relationships), the
visualization of nodes/edges cannot be customised (e.g. in

the case of UML-like visualizations [14]), the layout
capabilities are not scalable. In general, the visualization
aspects are rather poor in Rigi and this is the biggest
limitation we have experienced.

3 TOOLKIT ARCHITECTURE
We propose an architecture based on two concepts:
datasets and operations. As in a classical SciViz dataflow,
operations can read and write parts of datasets. The
desired functionality is achieved by sequencing several
operations in a specific order starting from a particular
dataset. In our toolkit, we use a centralised data model
where there is a single dataset DS across the whole
system. This dataset is read and written by all the
operations that we need to support. The operations can be
initiated by the user or the system, and can be applied in
any desired order.

The architecture of the toolkit consists of two major
components: the toolkit core and the user interface.

The toolkit core contains the data set DS and the
implementation of the operations for the creating the
graphical visualizations. It is implemented as a C++ class
library for performance and it is based on the Open
Inventor toolkit [20] for the graphical visualizations. The
user interface and the scripting layer are implemented in
Tcl/Tk for flexibility. All the major functionality offered
by the toolkit core is exported to the user with a Tcl API
as a set of operations. This approach allows us to
optimize the visualization engine for performance and to
quickly prototype different type of visualization and
interactions with the Tcl/Tk GUI.

Below we describe the data model, the operations and the
user interface of the toolkit

Figure 1. The toolkit architecture.

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

4 DATA MODEL
The basic data model is a typed attributed graph
(similarly to those described in [15], [1], [17]) and
contains three basic elements: structure, attributes and
selections.

The structure is the set of nodes and edges of the graph.
The nodes represent software artefacts extracted from the
program analysis tools. The edges model both relational
and containment information. The containment
information is typically added during architectural
recovery through a phase of plane assignment. We do not
assume any distinction between this information and
other relational information.

Nodes and edges may have key-value pair attributes. We
implement the keys as string literals and the values as
primitive types (integer, floating-point, pointer, or string).
Each node and edge has a set of attributes with distinct
keys, managed in a hash-table-like fashion. Attributes
automatically change type if written with a value of
another type. Several attribute planes can coexist in the
graph. An attribute plane is defined implicitly as all
attributes of a given set of nodes/edges for a given key.
Our attribute model differs from the one used by most
SciVis [16] and RE applications [2][21][7] which choose
a fixed set of attributes of fixed types for all nodes/edges.
Our choice is more flexible, since a) certain attributes
may not be defined for all nodes, and b) attribute planes
are frequently added and removed in a typical RE session.

Selections, defined as sets of nodes and edges, allow us to
execute the toolkit operations on a specific subset of the
whole graph. To make the toolkit flexible, we decouple
the definition of the operations from the selections on
which they are executed, similarly to the dataset-
algorithm decoupling in SciViz. Selections are named and
stored in variables accessible to the user as key-value
pairs selection-set, similarly to attributes. Overall, our
graph and selection data model is quite similar to the one
used by the GVF toolkit [8]. Our graphs are structurally
equivalent to the node-and-cell dataset model in SciViz
frameworks, whereas our selections do not have a direct
structural equivalent. Selections are functionally
equivalent to SciViz datasets, since they are the
operations’ inputs and outputs. As pointed out by [8], this
is one of the main differences between SciViz and graph-
based toolkits which leads to different architectures for
the two.

5 THE OPERATIONS
The operations implement a particular functionality of the
toolkit and modify the unique dataset DS. The operations
have three types of inputs and outputs: selections that
specify on which nodes and edges to operate, attribute
keys that specify on which attribute plane(s) of the
selection to work, and operation-specific parameters such

as thresholds or factors. We can categories the operations
according to their read/write data access: selection
operations, graph editing operations and mapping
operations.

The toolkit architecture (based on the dataset-operation
paradigm) allows the system to automatically update all
components that depend on the modified data after the
execution of any operation. For example, the selections
are automatically updated after a structure editing
operation which deletes selected nodes or edges.
Similarly, the data viewers are updated when the
selections that they monitor change. Although this is
largely similar to the SciViz dataflow mechanism [16],
we do not explicitly construct an operation pipeline. The
reason is that, in contrast to SciViz applications, reverse
engineering operations are seldom executed in the same
order in different RE sessions. The typical RE task can be
summarised as follows:

- select a subset of nodes/edges of interest.

- apply some editing operations on the selection.

- map the selection to a particular visual
representation.

Below, we describe the three categories of operations that
we support.

Selection operations
Selection operations create a selection of objects by
grouping nodes and edges. This is an important task in the
toolkit since all the operations accept as input a particular
selection. We implemented several basic selection
operations, as follows. Level selections (called ’horizontal
slices’ in the RE literature [21]) gather all the nodes and
association edges on a certain aggregation level in the
layered graph, and are useful for visualizing the software
at a given level of detail. Tree selections (called ’vertical
slices’ in [21]) gather all nodes and containment edges
reachable from a user defined selection of nodes, and are
useful e.g. for visualizing subsystem structures.
Conditional selections (called ’filters’ in most RE tools)
gather all elements in an input selection that obey some
attribute based condition, e.g. in queries like ’show all
nodes where the cost attribute is higher than some
threshold’.

Editing operations
Graph editing operations modify the graph dataset DS.
There are two categories of editing operations: structure
editing and attribute editing.

The structure editing operations construct and modify the
graph itself. We have basic operations for
adding/removing nodes and edges, and operations for
reading several graph format such as RSF [21], GraphEd
[5], DOT [9] and GXL [6]. Aggregation operations also

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

modify the graph and typically take the nodes of a
selection and connect them to a parent node by
containment arcs. The input selection can be either a user
selection or constructed as a sequence of Tcl commands.

The attribute editing operations create, modify and delete
the attributes from the nodes’ and edges’ attribute-sets.
The inputs of the attribute operations are the input
selection and one or several attribute-plane names where
the operation reads and/or writes. There are two important
attribute operations that we describe below: calculation of
RE metrics and graph layouts.

The calculation of RE metrics is treated as an attribute
editing operation that produces new attribute-planes.
Examples of RE metrics are the number of provisions,
requirements, internalisations of the aggregated nodes or
the cyclomatic number of a subgraph. Decoupling the
metric calculation from the selection operation allow us to
apply any metric on any subgraph (which is not the case
of other RE tools [21], [7]).

We treat graph layouts simply as attribute editing
operations and thus decouple them completely from
mapping and visualization. This has several benefits, in
contrast to other approaches [21], [7], [8]. First, we can

lay out different subgraphs separately, e.g. using spring
embedders [9], [3] for call graphs and tree layouts [9],
[18] for containment hierarchies. Second, we can
precompute several layouts e.g. to quickly switch
between them. Finally, we can cascade different layouts
on the same position attributes, e.g. to apply a fish-eye
distortion or refine an existing layout [4]. We have
implemented several custom layouts by cascading simple
ones, as follows. Stacked layouts (in Figure 2a) lay out a
selection spanning several layers of a graph by applying a
given 2D layout (e.g. spring embedder) per layer and then
stacking the layers in 3D. Stacked layouts visualize
effectively both containment (vertical) and association
(horizontal) relations of a software system. Nested layouts
(in Figure 2b) lay out a similar selection as above, by
recursively laying out the contents of every node
separately and then laying out the bounding boxes of the
containing nodes. Nested layouts produce images similar
to UML class diagrams and are very helpful in RE
applications. Users can easily combine any 2D layouts as
the building bricks for the stacked and nested layouts For
example, in Figure 2a we use a tree layout, whereas in
Figure 2b we use a spring embedder as basic layout.

Concretely, we use the AT&T’s DOT package [9] for tree

Figure 2. Stacked Layout (a) and nested layout (b).

Figure 3. The components of the mapping and visualization operations.

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

layouts and AT&T’s NEATO, GraphEd, and GEM [5][3]

for spring embedding. We have conducted several tests
on graphs up to 2000 nodes on which DOT was faster,
more robust, and produced visually better results than the
layouts of RE tools such as [21][7]. In about 70% of our
tests, GEM produced better layouts quicker than NEATO,
especially for graphs over 1000 nodes, but was more
sensitive to the parameter choice. Adding new layouts to
the toolkit is reasonably simple. Adding DOT, NEATO,
or GEM (whose implementations exceed 50000 C lines)
were wrapped by less than 100 C++ lines each, whereas
our custom layouts have each under 200 C++ lines.

Mapping and visualization operations
Mapping and visualization operations map the graph to
visual objects. They allow the user to visualise and
interact with the graph data. In the toolkit, there are four
components responsible to implement these operations:
mappers, viewers, glyph factories and glyphs as shown in
Figure 3. The visualization operations are implemented
using the Open Inventor C++ toolkit [20].

The central visualization component is the mapper, which
maps a selection to an Inventor scene graph. We have
implemented two mappers: the glyph and the splat
mapper. The glyph mapper creates a glyph for each node
and edge in the input selection and positions these glyphs
at the 2D or 3D coordinates provided by a particular
attribute plane (previously created with a layout
operation). The splat mapper produces a splat field [19]
from the input selection and an assigned density function,
as described in Section 7 .

The glyph is a 2D or 3D graphical object that visualises a
node or an edge. The user can customise the glyphs with a
Tcl script called the glyph factory. The script sets the
glyph’s graphical properties (color, shape, size,
annotation, and so on) from the attributes of the input
node or edge. When the mapper is executed, the tcl script

is invoked to build the desired glyph as an Inventor node.
Since the users may freely edit these scripts at run-time, it
is very easy to customize the visualization at hand. Figure
5 shows a glyph-based visualization of the software of a
program analysis system developed at Nokia. The left
image shows the graph laid out with a DOT layout while
the right image with the spring embedder. In this case, the
two views are based on the same selection but use a
different position attributes.

6 THE GUI
The core of the toolkit is exported to the user with a
simple Tcl API. The user interface is implemented with
the Tcl/Tk. The scripts and GUIs add custom
functionality, such as examining and editing node
attributes, selection objects, domain models, and viewers,
loading and saving data, and so on. These integrated
applications are functionally very similar to other RE
tools such as Rigi [21] and VANISH [7]. The main
difference is that our toolkit’s core architecture is based
on a few loosely coupled, orthogonal components: graph

Figure 5. Visualization of a RE clustered graph with glyphs in DOT (a) and spring (b) layout.

Figure 4. Visualization of the RE model.

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

and selection data objects, operations, mappers, glyphs,
and viewers. The data operation loose coupling and the
selections make it natural for developers to write small,
independent operations - so far all our operations range
from 20 to 150 C++ or Tcl lines.

7 EXPERIENCES WITH THE TOOLKIT
We have exploited the prototype with several reverse
engineering data extracted from Nokia software systems
implemented in various languages, C, C++, Java and
Tcl/Tk. The nodes of the graphs represent software
entities like classes, functions, packages or architectural
concepts like subsystems and components. The edges
represent relationships between them, like function calls,
containment, or architectural concepts, like messages.

We present some examples based on the glyph mapper

and the splat mapper.

The Glyph Mapper
The Figure 4 show the visualization of the whole model
extracted from the code. The graph (about 1200 nodes)
has been laid out with a spring embedder. The Figure 5
shows two examples where we have selected a subset of
the whole graph and applied a particular customization of
the nodes. The nodes of the files and directories are
represented as colored “document” and “folder” glyphs.
We have applied the DOT layout on the Figure 4a and the
spring embedder layout on the Figure 4b.

In Figure 6, we show the graph extracted from a Tcl/Tk
system. The nodes represent procedures and the edges
represent function calls. In the graph in Figure 6a, we
have selected a subgraph. The subgraph (in the upper-

Figure 6. A selected sub graph (a) and its visualization in a separate view (b).

Figure 7. The splat field showing provisions (a) and requirements (b) of the graph.

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

right corner of the picture) is highlighted. This selection is
visualized with the spring embedder in the Figure 6b. The
view is calculated according the selection. Any changes
to the selection are updated also in the second view.

The Splat Mapper
We used the splat matter to create a splat field of a graph.
We first layout the graph using a spring embedder and
then we select a particular scalar density function. In
Figure 7 we have applied the splat mapper on a graph of
about 2000 nodes extracted from a Java system. The
nodes represent classes and the edges represent the calls
between the methods of the classes. In Figure 7a, the
scalar density is the number of provisions of the classes
(the number of external classes that are calling the
methods of a class), in Figure 7b the density function is
the number of requirements for the classes (the number of
external classes that are called by a particular class). The
white zones represent a high concentration of nodes with
a high value of the density function. In Figure 7a, we can
identify the String class whose methods are invoked by a
large numbers of other classes. In Figure 7b, we can
quickly identify classes that are using a high number of
external classes (like the ones marked by the arrows). In
Figure 8, we have created the splat visualization for the
functions that implement the file system of a Linux
release. The nodes represent the functions and the edges
(not shown) represent function calls. The density function
is the number of provisions (in Figure 8a) and number of
requirements (in Figure 8b) of the functions. We can
easily identify the areas where there is an high
concentrations of highly coupled (the spring layout
aggregates highly coupled nodes) functions with a large

number of provisions (in the case of Figure 8a) and of
requirements (in the case of Figure 8b).

8 CONCLUSIONS AND FUTURE WORK
The toolkit we present in this paper is a first step towards
full support of the reverse architecting process. We have
implemented the basic functionality and graphical user
interface, and have experimented it on a number of
industrial case studies. The outcome has been promising,
and encourages further development of the tool, for
instance in the support for a better usability of the
visualization concepts, support for reverse engineering
specific graph transformations, selection of pre-defined
architectural views and in general to support a set of
visualizations that are visually closer to the mental images
that the architects have of a software architecture.

Further research on the subject could look at expanding
the support for reverse architecting product family
software, as well as rendering the visualization in some
standard notation and exchange format, such as UML or
XML. Also, the case studies we have worked on were of
relatively small size (in industrial terms). Therefore, the
tool should be tested on large and very large systems
before its suitability is demonstrated. We also plan to
implement a particular layout algorithm to support the
visualization of message sequence charts that are a key
requirement for the dynamic analysis.

9 REFERENCES
1. Card D. and Mackinlay J and Shneiderman B.,

Readings in Information Visualization, M. Kaufmann,
1999.

Figure 8. Splat visualization of the provisions (a) and requirements (b) of the functions in the Linux file system.

Proceedings of the International Workshop on Program Comprehension (IWPC-2002), Paris, 27-29 June 2002.

2. Eick S. and Wills G., Navigating large Networks with
Hierarchies, in Readings in Inf. Vis.[1]

3. Frick A., Ludwig A. and Mehldau H., A fast adaptive
layout algorithm for undirected graphs, Proc. Of
Graph Drawing ’94, Springer, 1995.

4. Herman, Melancon G. and Marshall M.S., Graph
Visualization and Navigation in Information
Visualization: a Survey, IEEE TVCG, 2000.

5. Himsolt M., GraphEd user manual, Technical report,
Fakultat fur Informatik, Universitat Passau, 1992.

6. Holt R. Holt and Winter A., GXL: Representing
Graph Schemas presentated at WCRE 2000 - 7th
Working Conference on Reverse Engineering
November, 23 - 25, 2000, Brisbane, Queensland,
Australia

7. Kazman R. KAZMAN and Carriere J., Rapid
Prototyping of Information Visualizations using
VANISH, Proc. IEEE InfoVis ’95, IEEE CS Press,
1995.

8. Marshall M. S., Herman I. HERMAN and Melancon
G. MELANCON, An Object-Oriented Design for
Graph Visualization, Software: Practice &
Experience, 31, pp. 439–756, 2001.

9. North S. C. and Koutsofios E. KOUTSOFIOS, DOT
and NEATO User’s Guide, AT&T Bell Labs Reports,
http://www.research.att.com, 1996.

10. Ran A., “ARES Conceptual Framework for Software
Architecture” in M. Jazayeri, A. Ran, F. van der
Linden (eds.), Software Architecture for Product
Families Principles and Practice, Addison Wesley,
2000.

11. RedHat Source Navigator,
http://sources.redhat.com/sourcenav/

12. Riva C. and J. V. Rodriguez, Combining Static and
Dynamic Views for Architecture Reconstruction,
Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering (CSMR
2002), IEEE Computer Society Press, 11-13 March
2002 in Budapest, Hungary, to appear.

13. Riva C., Reverse Architecting: an Industrial
Experience Report, Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE2000),
Brisbane, Australia, 23-25 November, 2000.

14. Riva C., Xu J. and Maccari A., Architecting and
Reverse Architecting in UML, presented at the
International Workshop on Describing Software
Architecture with UML, International Conference on
Software Engineering 2001 (ICSE), Toronto, May
2001.

15. Rohrich J., Graph Attribution with Multiple Attribute
Grammars, ACM SIGPLAN 22 (11), pp.55-70, 1987.

16. Schroeder W., Martin K. and Lorensen, The
Visualization Toolkit, 2nd edition, Prentice Hall, 1998

17. Stasko J., Domingue J. DOMINGUE and Brown M.
H. Prince, Software Visualization – Programming
Multimedia Experience, MIT Press, 1998.

18. Sugiyama K. SUGIYAMA, Tagawa S. TAGAWA
and Toda M., Methods for Visual Understanding of
Hierarchical Systems Structure, IEEE Trans. Systems,
Man, and Cybernetics, Vol. 11, No. 2, pp.109-125,
1989.

19. van Liere R., Studies in Interactive Visualization, PhD
thesis, CWI, Amsterdam, 2001.

20. Wernecke J., The Inventor Mentor: Programming
Object-Oriented 3D Graphics, Addison-Wesley, 1993.

21. Wong K., Rigi User’s Manual version 5.4.4, Dept. of
Computer Science, Univ. of Victoria, Canada.

