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Abstract 

Maintenance and evolution of complex software systems 
(such as large telecom embedded devices) involve 
activities such as reverse engineering (RE) and software 
visualization. Although several RE tools exist, we found 
their architecture hard to adapt to the domain specific 
requirements posed by our current practice in Nokia. In 
this paper, we present an open architecture which allows 
easy prototyping of RE data exploration and visualization 
scenarios for a large range of domain models. We pay 
special attention to the visual and interactive 
requirements of the reverse engineering process. This 
article describes the basic architecture of our toolkit, 
compares it to the existing RE environments and present 
several visualizations taken from real cases. 
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1 INTRODUCTION 
Reverse engineering (RE) is an essential part of the 
maintenance and evolution process of complex software 
systems. It may involve several tasks, such as program 
analysis, model capture and analysis, knowledge 
discovery and re-documentation. Reverse architecting is 
an extension of reverse engineering that also includes 
tasks such as abstraction of reverse engineering models 
and architecture recovery.  
Reverse architecting (explained to some degree of detail 
in section 2) aims at extracting high level architectural 
models of the system. The models are typically extracted 
from the code and rendered at a higher level of 
abstraction in order to highlight the architectural structure 
[10] of the software system. The model thereby obtained 
must be rendered in a graphical form in order to give a 
user-visible representation of the architectural artifacts. 
This step is known as visualization, and can be performed 
in various manners, such as graphical navigable views, at 
different levels of detail. 

Several tools support selected RE tasks by providing 
automatic and user-driven data extraction and visual data 
presentation [21], [7], [2]. In practice, attempts to reverse 
engineer large systems usually reach functional and/or 
structural limitations of such RE tools. A typical example 
of such limitations is the inability of most tools to display 
very large numbers of nodes and arcs.  
Other tools focus on visualization, but usually offer little 
support for program analysis. They also do not integrate 
well with program analysis tools. In comparison with 
scientific visualization (SciViz), where established 
generic system architectures and implementations are 
now common, most RE tools are still too narrowly 
specialized, and are inadequate for reverse architecting 
(which implies easy integration between program analysis 
and visualization tools).  
To address the above problems, we propose an open 
software toolkit for RE tools. The toolkit we present 
accommodates a large range of RE data types, operations, 
and application scenarios. Subsequently, we present 
examples of constructing RE exploration and 
visualization applications taken from industrial case 
studies. Section 2 summarizes the reverse architecting 
process and elaborates on how the existing software tools 
support it in practice. Section 3 introduces the 
architecture of the toolkit, while sections 4 and 5 present 
the core architecture of the tool (respectively, data model 
and back-end). Section 6 shows an end-user view of our 
tool. Section 7 illustrates the application of the tool to 
analyze the concrete data taken from industrial case 
studies. We conclude the paper with directions for future 
research in section 8. 

2 REVERSE ENGINEERING OVERVIEW 
In [13] and [12], we have proposed an architecture 
recovery method based on a four-step reverse engineering 
process: definition of architectural concepts (to select the 
architectural elements of the recovery), extraction (to 
capture a low level model of the system), abstraction (to 
inject domain knowledge in the model) and visualization 
(to present the architectural model with multiple views). 
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Visualization plays an important role for presenting the 
architectural model and to allow the user to navigate the 
model, to generate new views, and to interact during the 
abstraction phase. We can refine the RE tasks into the 
following five generic operations that a RE tool should 
support:  

1. Extract the low-level model from the artefacts of the 
system (like the source code). This is achieved by 
external code analysers that typically offer APIs to 
access the internal symbol table (such as Source 
Navigator [11]). 

2. Refine the low level model in order to emphasize the 
user sensitive information. 

3. Aggregate the extracted artefacts into a hierarchical 
model according to the domain knowledge.  

4. Measure the quality of the model with computed 
norms or calculate particular software metrics. If 
needed re-execute the aggregation differently  

5. Select a sub-hierarchy of the model to focus the 
analysis on. 

6. Visualise the data, e.g. by laying out the graph with a 
particular algorithm.  

This process is applied iteratively and the tasks from 2 to 
6 can take place in any order. Typically, the user tries to 
visualise the initial low-level model to get an overview of 
the graph. Then, he/she can apply some aggregations, 
measure its quality, re-visualise the graph. Once the high-
level model has been generated the user needs to navigate 
it by creating multiple views of the same data set.  

In most cases, the operations of aggregation, selection, 
filtering, lay out and visualization are the most important 
from the task of examining the extracted model. In our 
previous work [13] and [12], we have based our 
visualization on the Rigi environment [21] and extended 
it to support the visualization of Message Sequence 
Charts (MSCs) for dynamic analysis. Rigi satisfies most 
of our needs but it is not flexible enough in terms of 
visualization. We have found Rigi to be useful for 
creating a hierarchical model by aggregating nodes, 
navigating the hierarchical graphs, filtering according to 
user selection or entity types and creating multiple 
synchronised views. We have also made use of the 
domain paradigm that allows us to define the types of 
nodes/edges, the simple RSF input and the Tcl scripting 
that allows to customise the environment. However, Rigi 
lacks modern and robust visualization techniques: the 
selection of sub graphs is not well supported, we can 
specify only one containment relationships (while the 
users often need to aggregate and visualise the graph 
according to different part-of relationships), the 
visualization of nodes/edges cannot be customised (e.g. in 

the case of UML-like visualizations [14]), the layout 
capabilities are not scalable. In general, the visualization 
aspects are rather poor in Rigi and this is the biggest 
limitation we have experienced. 

3 TOOLKIT ARCHITECTURE 
We propose an architecture based on two concepts: 
datasets and operations. As in a classical SciViz dataflow, 
operations can read and write parts of datasets. The 
desired functionality is achieved by sequencing several 
operations in a specific order starting from a particular 
dataset. In our toolkit, we use a centralised data model 
where there is a single dataset DS across the whole 
system. This dataset is read and written by all the 
operations that we need to support. The operations can be 
initiated by the user or the system, and can be applied in 
any desired order.  

The architecture of the toolkit consists of two major 
components: the toolkit core and the user interface.  

The toolkit core contains the data set DS and the 
implementation of the operations for the creating the 
graphical visualizations. It is implemented as a C++ class 
library for performance and it is based on the Open 
Inventor toolkit [20] for the graphical visualizations. The 
user interface and the scripting layer are implemented in 
Tcl/Tk for flexibility. All the major functionality offered 
by the toolkit core is exported to the user with a Tcl API 
as a set of operations. This approach allows us to 
optimize the visualization engine for performance and to 
quickly prototype different type of visualization and 
interactions with the Tcl/Tk GUI.  

Below we describe the data model, the operations and the 
user interface of the toolkit 

 

Figure 1. The toolkit architecture.  
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4 DATA MODEL 
The basic data model is a typed attributed graph 
(similarly to those described in [15], [1], [17]) and 
contains three basic elements: structure, attributes and 
selections.  

The structure is the set of nodes and edges of the graph. 
The nodes represent software artefacts extracted from the 
program analysis tools. The edges model both relational 
and containment information. The containment 
information is typically added during architectural 
recovery through a phase of plane assignment. We do not 
assume any distinction between this information and 
other relational information. 

Nodes and edges may have key-value pair attributes. We 
implement the keys as string literals and the values as 
primitive types (integer, floating-point, pointer, or string). 
Each node and edge has a set of attributes with distinct 
keys, managed in a hash-table-like fashion. Attributes 
automatically change type if written with a value of 
another type. Several attribute planes can coexist in the 
graph. An attribute plane is defined implicitly as all 
attributes of a given set of nodes/edges for a given key. 
Our attribute model differs from the one used by most 
SciVis [16] and RE applications [2][21][7] which choose 
a fixed set of attributes of fixed types for all nodes/edges. 
Our choice is more flexible, since a) certain attributes 
may not be defined for all nodes, and b) attribute planes 
are frequently added and removed in a typical RE session. 

Selections, defined as sets of nodes and edges, allow us to 
execute the toolkit operations on a specific subset of the 
whole graph. To make the toolkit flexible, we decouple 
the definition of the operations from the selections on 
which they are executed, similarly to the dataset-
algorithm decoupling in SciViz. Selections are named and 
stored in variables accessible to the user as key-value 
pairs selection-set, similarly to attributes. Overall, our 
graph and selection data model is quite similar to the one 
used by the GVF toolkit [8]. Our graphs are structurally 
equivalent to the node-and-cell dataset model in SciViz 
frameworks, whereas our selections do not have a direct 
structural equivalent. Selections are functionally 
equivalent to SciViz datasets, since they are the 
operations’ inputs and outputs. As pointed out by [8], this 
is one of the main differences between SciViz and graph-
based toolkits which leads to different architectures for 
the two. 

5 THE OPERATIONS 
The operations implement a particular functionality of the 
toolkit and modify the unique dataset DS. The operations 
have three types of inputs and outputs: selections that 
specify on which nodes and edges to operate, attribute 
keys that specify on which attribute plane(s) of the 
selection to work, and operation-specific parameters such 

as thresholds or factors. We can categories the operations 
according to their read/write data access: selection 
operations, graph editing operations and mapping 
operations.  

The toolkit architecture (based on the dataset-operation 
paradigm) allows the system to automatically update all 
components that depend on the modified data after the 
execution of any operation. For example, the selections 
are automatically updated after a structure editing 
operation which deletes selected nodes or edges. 
Similarly, the data viewers are updated when the 
selections that they monitor change. Although this is 
largely similar to the SciViz dataflow mechanism [16], 
we do not explicitly construct an operation pipeline. The 
reason is that, in contrast to SciViz applications, reverse 
engineering operations are seldom executed in the same 
order in different RE sessions. The typical RE task can be 
summarised as follows:  

- select a subset of nodes/edges of interest. 

- apply some editing operations on the selection. 

- map the selection to a particular visual 
representation.  

Below, we describe the three categories of operations that 
we support.  

Selection operations 
Selection operations create a selection of objects by 
grouping nodes and edges. This is an important task in the 
toolkit since all the operations accept as input a particular 
selection. We implemented several basic selection 
operations, as follows. Level selections (called ’horizontal 
slices’ in the RE literature [21]) gather all the nodes and 
association edges on a certain aggregation level in the 
layered graph, and are useful for visualizing the software 
at a given level of detail. Tree selections (called ’vertical 
slices’ in [21]) gather all nodes and containment edges 
reachable from a user defined selection of nodes, and are 
useful e.g. for visualizing subsystem structures. 
Conditional selections (called ’filters’ in most RE tools) 
gather all elements in an input selection that obey some 
attribute based condition, e.g. in queries like ’show all 
nodes where the cost attribute is higher than some 
threshold’. 

Editing operations 
Graph editing operations modify the graph dataset DS. 
There are two categories of editing operations: structure 
editing and attribute editing.  

The structure editing operations construct and modify the 
graph itself. We have basic operations for 
adding/removing nodes and edges, and operations for 
reading several graph format such as RSF [21], GraphEd 
[5], DOT [9] and GXL [6]. Aggregation operations also 
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modify the graph and typically take the nodes of a 
selection and connect them to a parent node by 
containment arcs. The input selection can be either a user 
selection or constructed as a sequence of Tcl commands.  

The attribute editing operations create, modify and delete 
the attributes from the nodes’ and edges’ attribute-sets. 
The inputs of the attribute operations are the input 
selection and one or several attribute-plane names where 
the operation reads and/or writes. There are two important 
attribute operations that we describe below: calculation of 
RE metrics and graph layouts.  

The calculation of RE metrics is treated as an attribute 
editing operation that produces new attribute-planes. 
Examples of RE metrics are the number of provisions, 
requirements, internalisations of the aggregated nodes or 
the cyclomatic number of a subgraph. Decoupling the 
metric calculation from the selection operation allow us to 
apply any metric on any subgraph (which is not the case 
of other RE tools [21],  [7]).  

We treat graph layouts simply as attribute editing 
operations and thus decouple them completely from 
mapping and visualization. This has several benefits, in 
contrast to other approaches [21], [7], [8]. First, we can 

lay out different subgraphs separately, e.g. using spring 
embedders [9], [3] for call graphs and tree layouts [9], 
[18] for containment hierarchies. Second, we can 
precompute several layouts e.g. to quickly switch 
between them. Finally, we can cascade different layouts 
on the same position attributes, e.g. to apply a fish-eye 
distortion or refine an existing layout [4]. We have 
implemented several custom layouts by cascading simple 
ones, as follows. Stacked layouts (in Figure 2a) lay out a 
selection spanning several layers of a graph by applying a 
given 2D layout (e.g. spring embedder) per layer and then 
stacking the layers in 3D. Stacked layouts visualize 
effectively both containment (vertical) and association 
(horizontal) relations of a software system. Nested layouts 
(in Figure 2b) lay out a similar selection as above, by 
recursively laying out the contents of every node 
separately and then laying out the bounding boxes of the 
containing nodes. Nested layouts produce images similar 
to UML class diagrams and are very helpful in RE 
applications. Users can easily combine any 2D layouts as 
the building bricks for the stacked and nested layouts For 
example, in Figure 2a we use a tree layout, whereas in 
Figure 2b we use a spring embedder as basic layout. 

Concretely, we use the AT&T’s DOT package [9] for tree 

Figure 2. Stacked Layout (a) and nested layout (b). 

Figure 3. The components of the mapping and visualization operations. 
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layouts and AT&T’s NEATO, GraphEd, and GEM [5][3] 

for spring embedding. We have conducted several tests 
on graphs up to 2000 nodes on which DOT was faster, 
more robust, and produced visually better results than the 
layouts of RE tools such as [21][7]. In about 70% of our 
tests, GEM produced better layouts quicker than NEATO, 
especially for graphs over 1000 nodes, but was more 
sensitive to the parameter choice. Adding new layouts to 
the toolkit is reasonably simple. Adding DOT, NEATO, 
or GEM (whose implementations exceed 50000 C lines) 
were wrapped by less than 100 C++ lines each, whereas 
our custom layouts have each under 200 C++ lines. 

Mapping and visualization operations 
Mapping and visualization operations map the graph to 
visual objects. They allow the user to visualise and 
interact with the graph data. In the toolkit, there are four 
components responsible to implement these operations: 
mappers, viewers, glyph factories and glyphs as shown in 
Figure 3. The visualization operations are implemented 
using the Open Inventor C++ toolkit [20]. 

The central visualization component is the mapper, which 
maps a selection to an Inventor scene graph. We have 
implemented two mappers: the glyph and the splat 
mapper. The glyph mapper creates a glyph for each node 
and edge in the input selection and positions these glyphs 
at the 2D or 3D coordinates provided by a particular 
attribute plane (previously created with a layout 
operation). The splat mapper produces a splat field [19] 
from the input selection and an assigned density function, 
as described in Section 7 .  

The glyph is a 2D or 3D graphical object that visualises a 
node or an edge. The user can customise the glyphs with a 
Tcl script called the glyph factory. The script sets the 
glyph’s graphical properties (color, shape, size, 
annotation, and so on) from the attributes of the input 
node or edge. When the mapper is executed, the tcl script 

is invoked to build the desired glyph as an Inventor node. 
Since the users may freely edit these scripts at run-time, it 
is very easy to customize the visualization at hand. Figure 
5 shows a glyph-based visualization of the software of a 
program analysis system developed at Nokia. The left 
image shows the graph laid out with a DOT layout while 
the right image with the spring embedder. In this case, the 
two views are based on the same selection but use a 
different position attributes.  

6 THE GUI 
The core of the toolkit is exported to the user with a 
simple Tcl API. The user interface is implemented with 
the Tcl/Tk. The scripts and GUIs add custom 
functionality, such as examining and editing node 
attributes, selection objects, domain models, and viewers, 
loading and saving data, and so on. These integrated 
applications are functionally very similar to other RE 
tools such as Rigi [21] and VANISH [7]. The main 
difference is that our toolkit’s core architecture is based 
on a few loosely coupled, orthogonal components: graph 

Figure 5. Visualization of a RE clustered graph with glyphs in DOT (a) and spring (b) layout. 

Figure 4. Visualization of the RE model. 
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and selection data objects, operations, mappers, glyphs, 
and viewers. The data operation loose coupling and the 
selections make it natural for developers to write small, 
independent operations - so far all our operations range 
from 20 to 150 C++ or Tcl lines.  

7 EXPERIENCES WITH THE TOOLKIT 
We have exploited the prototype with several reverse 
engineering data extracted from Nokia software systems 
implemented in various languages, C, C++, Java and 
Tcl/Tk. The nodes of the graphs represent software 
entities like classes, functions, packages or architectural 
concepts like subsystems and components. The edges 
represent relationships between them, like function calls, 
containment, or architectural concepts, like messages.  

We present some examples based on the glyph mapper 

and the splat mapper.  

The Glyph Mapper 
The Figure 4 show the visualization of the whole model 
extracted from the code. The graph (about 1200 nodes) 
has been laid out with a spring embedder. The Figure 5 
shows two examples where we have selected a subset of 
the whole graph and applied a particular customization of 
the nodes. The nodes of the files and directories are 
represented as colored “document” and “folder” glyphs. 
We have applied the DOT layout on the Figure 4a and the 
spring embedder layout on the Figure 4b. 

In Figure 6, we show the graph extracted from a Tcl/Tk 
system. The nodes represent procedures and the edges 
represent function calls. In the graph in Figure 6a, we 
have selected a subgraph. The subgraph (in the upper-

Figure 6. A selected sub graph (a) and its visualization in a separate view (b). 

Figure 7. The splat field showing provisions (a) and requirements (b) of the graph. 
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right corner of the picture) is highlighted. This selection is 
visualized with the spring embedder in the Figure 6b. The 
view is calculated according the selection. Any changes 
to the selection are updated also in the second view.  

The Splat Mapper 
We used the splat matter to create a splat field of a graph. 
We first layout the graph using a spring embedder and 
then we select a particular scalar density function. In 
Figure 7 we have applied the splat mapper on a graph of 
about 2000 nodes extracted from a Java system. The 
nodes represent classes and the edges represent the calls 
between the methods of the classes. In Figure 7a, the 
scalar density is the number of provisions of the classes 
(the number of external classes that are calling the 
methods of a class), in Figure 7b the density function is 
the number of requirements for the classes (the number of 
external classes that are called by a particular class).  The 
white zones represent a high concentration of nodes with 
a high value of the density function. In Figure 7a, we can 
identify the String class whose methods are invoked by a 
large numbers of other classes. In Figure 7b, we can 
quickly identify classes that are using a high number of 
external classes (like the ones marked by the arrows). In 
Figure 8, we have created the splat visualization for the 
functions that implement the file system of a Linux 
release. The nodes represent the functions and the edges 
(not shown) represent function calls. The density function 
is the number of provisions (in Figure 8a) and number of 
requirements (in Figure 8b) of the functions. We can 
easily identify the areas where there is an high 
concentrations of highly coupled (the spring layout 
aggregates highly coupled nodes) functions with a large 

number of provisions (in the case of Figure 8a) and of 
requirements (in the case of Figure 8b). 

8 CONCLUSIONS AND FUTURE WORK 
The toolkit we present in this paper is a first step towards 
full support of the reverse architecting process. We have 
implemented the basic functionality and graphical user 
interface, and have experimented it on a number of 
industrial case studies. The outcome has been promising, 
and encourages further development of the tool, for 
instance in the support for a better usability of the 
visualization concepts, support for reverse engineering 
specific graph transformations, selection of pre-defined 
architectural views and in general to support a set of 
visualizations that are visually closer to the mental images 
that the architects have of a software architecture. 

Further research on the subject could look at expanding 
the support for reverse architecting product family 
software, as well as rendering the visualization in some 
standard notation and exchange format, such as UML or 
XML. Also, the case studies we have worked on were of 
relatively small size (in industrial terms). Therefore, the 
tool should be tested on large and very large systems 
before its suitability is demonstrated. We also plan to 
implement a particular layout algorithm to support the 
visualization of message sequence charts that are a key 
requirement for the dynamic analysis. 
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