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Abstract

Maintenance and evolution of complex software systems
(such as mobile telephones) involves activities such as
reverse engineering and software visualisation. Reverse
engineering provides a conceptual framework for de-
scribing the software understanding and concept abstrac-
tion processes. This framework is implemented up to
different degrees by several reverse engineering tools.
However, we found the architecture of most of these tools
hard to adapt to the domain and problem specific require-
ments posed by our current practice in Nokia. We be-
lieve that the architecture of a reverse engineering tool
should reflect the logical steps of the conceptual frame-
work. We propose such an architecture and present a con-
crete reverse engineering toolkit that implements it. The
toolkit provides a flexible way to build reverse engineer-
ing scenarios by subclassing and composition of a few
basic software components. We pay special attention to
the visual and interactive requirements of the reverse en-
gineering process. We compare our toolkit with other ex-
isting reverse engineering visual tools and outline the dif-
ferences. We show our plans to use it for further research
on visualising the complex software structures that we
extract from our products.

1 Introduction

Program understanding [9, 1, 21] is an essential part of
maintenance and evolution of complex software systems.
The term ”program understanding” means identifying
the software artifacts that compose a certain system and
the structure and semantics of their relationships. Re-
verse engineering is the part of program understanding
that concerns with the extraction of the low level system
implementation data and their presentation at the right
abstraction level. Several tools support reverse engineer-

ing by providing several automatic and user-driven ac-
tivities for data extraction and visual data presentation
[6, 7, 15].

In practice, however, attempts to reverse engineer
large systems usually reach some functional and/or struc-
tural limitations of these tools. Some tools focus on the
domain modelling and the program analysis mechanics
but provide little for the examination and/or user editing
of the extracted information. Other tools provide exten-
sive, sometimes exotic data visualisation and editing fa-
cilities [15, 7], but do not support program analysis oper-
ations or are hard to integrate with tools that perform this
task.

To address the above problems, we propose a new ar-
chitecture for RE tools. First, we identify the common
support the various RE tasks demand from such a tool
and propose a few ’agents’ a generic RE tool should sup-
port (Sec. 1.1). Our architecture implements these agents
as loosely coupled object-oriented software components
that can be subclassed and/or composed to customise the
tool for a given domain-specific scenario (Sec. 1.3). Sec-
tions 2 and 3 present our architecture in detail. Section 5
shows and end-user view of our tool. Section 6 illustrates
the use of our RE tool for the analysis of concrete soft-
ware data from the industry. Section 7 concludes the pa-
per with directions for future work.

1.1 Reverse Engineering Tasks

A past investigation detected five major tasks that a re-
verse engineering (RE) tool should support [1]. These
tasks are, in increasing abstraction level order: program
analysis, plan recognition, concept assignment, redocu-
mentation, and architecture recovery (see also Fig. 1)).
Program analysis is the basic task that any RE tool should
support. RE tools should provide two main program
analysis services: construction of the program layered
representation by automatic and user-driven (interactive)
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Figure 1: Reverse engineering tasks

operations, and the presentation of the layered represen-
tation to the user in various manners, such as graphical
navigable views at different detail levels [15, 17]. Plan
recognition aims at finding certain design patterns in the
software [25]. These design patterns form the so-called
domain model (Fig. 1). A first attempt for plan recogni-
tion support in a RE tool would be an interactive editor
that allows the (manual) assignment of design patterns to
elements obtained from program analysis and the visuali-
sation thereof by means e.g. of UML diagrams. Concept
assignment [8] is the task of discovering concepts and as-
signing them to their implementation counterparts in the
subject system. RE tools might support concept assign-
ment by annotating the software artifacts obtained from
the previous stages with concepts picked from a domain-
specific concept database and visualising this annotation.
Redocumentation [21] is the task of retroactively provid-
ing documentation for existing software systems. Since
redocumentation spans the three tasks discussed so far,
a RE tool could support it by the mechanisms outlined
so far. Architecture recovery [13] focuses on recovering
the architectural aspects of large software systems. Ar-
chitecture recovery support in RE tools may demand yet
another (graphical) system representation as a set of sub-
systems.

1.2 Requirements for a RE Tool

Although different, the five mentioned RE tasks concur,
and not compete, to the overall goal of reverse engineer-
ing, i.e. extracting low-level information from the code
and enriching it with information from other sources.
The unified requirements of these tasks could be sum-
marised as: provide different views of the same data
on which various queries, supported by a given domain
model, can be made. Consequently, we identify three
main ’agents’ that a generic RE tool should provide:
views, queries, and domain models.

The views relate to the different focuses of the RE
tasks [1]. Among these, we mention structural views

(syntax trees, file-directory containment hierarchies, de-
sign pattern instances), functional views (concept and
dataflow graphs), low-level views (source code), and
high-level views (architectural plans, user documenta-
tion). A generic RE tool should provide several of
these views and allow defining and customising domain-
specific views [14, 21].

The same flexibility should be provided for queries. A
query is any algorithmic operation that can be executed
on a given software representation, e.g. searching for oc-
currences of a specific pattern, removing or replacing of
an element with a given value or structure, aggregation of
several elements into a higher-level one, computing qual-
ity metrics, and so on. Since many queries are domain
or application specific, RE tools should provide a generic
and simple manner for defining them.

Finally, the RE tool should allow a simple way to de-
fine problem-specific domain models. A domain model
is a set of meta-rules that describes certain aspects
present in the analysed software, such as a source-code
grammar, a set of design patterns to be identified, or a
set of client-supplier relationships to be analysed. RE
tools can use domain models to perform various queries
automatically on the software data at a higher level than
purely structural.

1.3 Concrete RE Operations

We approach the above requirements by designing a new
reverse engineering toolkit. This toolkit addresses the
needs for extensibility, domain retargeting, genericity,
and simplicity to use by using a new architecture which
closely models the steps of the conceptual RE pipeline,
as follows.

We identify five generic operations that implement the
five RE tasks introduced in Sec. 1.1, similarly to other au-
thors [25, 14, 21] (see also Fig. 2):

1. extract the low-level artifacts from the source code

2. aggregate the extracted artifacts to produce a hier-
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Figure 2: Reverse engineering pipeline

archical system representation

3. measure the quality of the produced representation
by using various computed norms or by applying
human intuition. If necessary, reexecute the aggre-
gation step differently.

4. select a part of the hierarchy to examine, as the hi-
erarchy’s complexity and size precludes displaying
it in full at one time. Moreover, selection (or filter-
ing) allows users to focus on specific aspects of the
representation.

5. visualise the selected data to gain a better under-
standing of the system. Insight acquired in this
phase may determine to reexecute the previous
phases differently.

Steps 2 to 5 can take place in any order - for example,
one might want first to visualise the whole database pro-
duced by Step 1, then apply some user- or system-driven
aggregation (Step 2), measure the quality of the obtained
system (Step 3), select a certain feature to look at (Step
4), and so on.

Although traditionally being a program analysis model
only, the above pipeline can be used all five RE tasks
(Sec. 1.1). All selection, measuring, and visualisation
operations apply thus to all five tasks, every task re-
quiring potentially different operation implementations.
Consequently, we use the above five-operation pipeline
model as a basis for our generic RE tool’s architecture
(Fig. 3).

The toolkit is implemented as a layered system. Each
layer is structured as a self-contained software compo-
nent set. The toolkit core is implemented as a C++ class
library, for performance reasons. The user interface layer
is implemented in Tcl/Tk for flexibility reasons. The next
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Figure 3: Overview of the toolkit architecture

section discusses the core data structures central to our
architecture. The implementation of the RE operations
is discussed next in Sec. 3.

2 Data Representation

We propose a data representation containing four ele-
ments: structure, attributes, selections, and domain mod-
els, as follows.

2.1 Structure

The structure data consists of two main elements:
� a representation of the basic artifacts, i.e. the

low-level elements that constitute the input for the
RE process, usually obtained by parsing the source
code.

� a hierarchical representation of the structuring and
enrichment of the information during the RE pro-
cess.

There are many ways to describe this information.
Korth [4] proposes a relational data model. Rohrich
[12] discusses an attributed graph. The visualisation
community discusses data tables [16, 17]. However,
all these representations are ultimately hierarchical at-
tributed graphs, best described as (k,2)-partite graphs
[2] ( Figure 4 shows an example. The software artifacts
A,B,C,D, and E are read by the RE tool e.g. by parsing
source code. This information is further refined by clus-
tering A,B, and C into the F, D and E into G, leading to
the hierarchy level 2 The nodes F and G are clustered into
the node H, leading to the hierarchy level 3. All nodes A
to H, linked by the horizontal edges (thick lines) and ver-
tical edges (dotted lines), form the (k,2)-partite graph that
completely describes the RE data structure.

(k,2)-partite graphs are particularly suited for our RE
tool data model. They are generic, i.e. can store both the
basic and the higher-level information produced by the
RE data abstraction process. The graph levels may rep-
resent the same type of information, such as files in a file-
directory hierarchy, or different types, such as variables,
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Figure 4: Example of (k,2)-partite graph

grouped in procedures, grouped in modules, etc. This
representation covers all the five RE tasks: higher levels
can represent architectural elements associated to syntac-
tic software artifacts on the lower levels. The model is
also easily navigable and compact, making it efficient for
implementing the query, selection, filtering, and viewing
operations. Graph nodes with several parents can easily
model alternative system structurings.

2.2 Attributes

Both nodes and edges in the graph may have attributes
modelled as key-value pairs. We implement keys as
string literals and values as primitive types (integer,
floating-point, pointer, or string). Each graph node and
edge has an attribute-set, i.e. a collection of attributes
with distinct keys. Managing attribute sets is optimised
for simplicity: if one writes an attribute with a key that
doesn’t exist in the collection, a new attribute for that key
is inserted, otherwise the existing attribute is overwritten.
Attributes automatically change type if written to with a
value of another type.

Several attribute planes can coexist in the graph. An
attribute plane consists of all attributes of a given set of
nodes and/or edges for a given key. For example, one can
set or query the ”price” attribute-plane of a given node
set.

The above model is quite different from the attribute
representation of other RE and software visualisation
tools [15, 6, 7]. Most such tools choose a fixed set of at-
tributes of fixed types per node and/or edge, similarly to
typed records. Our choice is more flexible, since a) cer-
tain attributes may not be defined for all nodes, and b)
attribute-planes are frequently added and removed during
a typical RE session.

Structure and attributes are implemented in terms of
a Graph C++ class that has several Level objects
(Fig. 5). A Level contains several Nodes, connected
by horizontalEdges. Nodes andEdges inherit from the
attribute-set class AttrSet that contains a number of
Attribute instances.
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Graph

* levels

*
nodes horizontal
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attributes

*

*
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Figure 5: Graph dataset class hierarchy

2.3 Selections

Selections are the second main component of our RE data
model. A selection is defined as a set of nodes and edges
of the Graph. Selections allow executing any operation
of our toolkit on a specific subset of the whole graph. To
make the toolkit flexible, we decouple the definition of
the operation from the selection on which it is executed.

The main property of selections is allowing their op-
eration clients to iterate over the contained nodes and
edges (Fig. 6). To optimise memory storage and iter-
ation speed, we implement several selection subclasses
that store nodes and edges internally in different ways.
This is an important aspect, as an usual RE session cre-
ates tenths of selections with hundreds or even thousands
of elements.

Selections are named, similarly to the attributes. All
selections are kept in a selection-list, which is managed
similarly to the attribute-set. Selections can be retrieved
by name from the list. When a new selection is inserted
into the list, any existing selection with that name is
deleted. Asking for a selection whose name is not in the
list returns a special EmptySelection object. In this
way, operations do not have to test explicitly if their se-
lection arguments exist or not in the list. This simplifies
the implementation of a new operations.

Graph
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iterators over Graph’s
Nodes and Edges

SelectionList

SelectionNode Edge

* *

*

*

EmptySelection

TreeSelection

LevelSelection

FullSelection

Figure 6: Implementation of selections

2.4 Domain Models

Domain models are implemented in our toolkit as a set
of meta-rules that prescribe the structure and attributes of
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is a collection of attribute types. An attribute type con-
sists of a name and a type. The above model is roughly
similar to the type system provided by several program-
ming languages for e.g. records. The toolkit supports
a collection of domain models defined as above. Simi-
larly to graph data, domain models can be loaded from
several file formats, such as the RSF format [6]. Nodes
and edges may then be associated with a node, respec-
tively edge type by setting a ”type” attribute to name the
desired attribute node, respectively. Operations such as
metrics or aggregations may then use the types of nodes
and edges to infer about their domain-specific properties.

Several RE tools such as [7] implement domain mod-
els differently, i.e. by modelling every node and edge
type as a class in the toolkit’s own programming language
and implementing nodes and edges as instances thereof.
However, this has several drawbacks. One can not add or
delete attributes from existing nodes and edges, change
attribute types, change the type of a node or edge, or in-
troduce new domain models without recompiling the sys-
tem. The main advantage of using a compiled solution —
strong type checking — is not essential or may be even
restrictive for the prototyping and investigative nature of
the RE applications. We have chosen thus for a purely
run-time, weakly-typed implementation of domain mod-
els.

3 Operation Model

Operations read and write the Graph dataset via Se-
lection objects. Operations may have three types
of inputs and outputs: selections that specify on which
nodes and edges the operation works; attribute keys that
specify on which attribute planes of the selected nodes
and edges the operation works; and parameters specific
to the operation, such as the threshold value for a data
thresholding operation. Following the conceptual RE
task model (Sec. 1.3), we distinguish three major oper-
ation types, as follows (see also Fig. 7). Selection oper-

Graph          Selections     Operation

r                          rw           selection
rw                        r             editing

r                           r             mapping

Figure 7: Operations versus reading/writing data

ations encode different algorithms to build selection ob-
jects. Selection operations are the only ones that create
selection objects and are described further in Sec. 3.1.

Graph editing operations modify the graph dataset by
editing the graph’s graph structure or graph attributes.
These are the only operations that modify the Graph
dataset and are described in Sec. 3.2. Mapping oper-
ations map the graph dataset to some other representa-
tions. Data visualisation operations and operations that
save data e.g. to a file are mapping operations. These are
the only operations that only read both the Graph and
the selections and are discussed in Sec. 4.

The above read/write interface between operations and
the system’s data has two advantages. First, it provides a
clear specification of the operations’ responsibilities for
the operation developers. Secondly, this allows the sys-
tem to infer which data elements are modified after the
execution of one or several operations and to automati-
cally update all other system components that depend on
the modified elements. For example, all selection objects
are automatically updated after the execution of a struc-
ture editing operation, since this operation might have in-
serted or deleted nodes or edges referred by the selec-
tions. A second example are the data viewers presented
in detail in Sec. 4.3 that are automatically updated once
the selections they monitor get modified.

In the following, we describe several concrete opera-
tion implementations.

3.1 Selection Operations

Selection operations produce specific subclasses of the
generic Selection interface (Fig. 6), as follows.
Level Selection
A level selection receives a level number as an input and
produces a selection that contains all the nodes and hor-
izontal edges on that level. Level selections can be use-
ful, for example, as input for visualising a specific level
of aggregation in a (k,2)-digraph that represents a soft-
ware system. Level selections implement what other RE
tools call horizontal slices in the data model [6, 7].
Tree Selection
A tree selection receives a selection � � as input and pro-
duces a selection � � that contains all the nodes and down-
ward edges that are reachable from the nodes in � � . Tree
selections can be useful e.g. as input for visualising the
so-called vertical slices in a (k,2)-digraph.
Conditional Selections
A conditional expression receives a selection � � as input
and produces a selection � � that contains all the nodes and
edges of � � that obey a certain condition. The condition
can be specified by the user as a function of the node at-
tributes. Conditional selections implement what the RE
tools usually call filtering. They are used to e.g. visualise
specific parts of a large graph in queries such as: ’show
all nodes where the cost attribute is higher than a given



threshold’.

3.2 Graph Editing Operations

Graph editing operations edit the graph structure or the
node/edge attributes, as follows.

3.3 Structure Editing

Structure editing operations construct and modify the
Graph structure. The simplest operations are addi-
tion/removal of nodes, edges, and levels, implemented
as methods of the corresponding classes Node, Edge,
Level, and Graph.

3.3.1 Importing Graph Data

These operations read a graph structure from a file by
parsing specific file formats such as RSF [6], GraphEd
[20], and DOT [11]. Since the C++ code of these oper-
ations is 100 lines on average, it is reasonably simple to
implement a reader for a new data format.

3.3.2 Aggregation

Aggregation operations usually take several nodes via an
input Selection and produce a unique parent node.
Implementing aggregation operations is straightforward.
This involves iterating over the input nodes and con-
structing new vertical edges and a new node. The input
selection can be either programmatically constructed or
can be the output of user interaction (Sec. 4.2). More
complex aggregation methods can be implemented too,
such as topology-based automatic graph simplification
[22].

3.4 Attribute Editing

These operations create, modify, and delete attributes
from the nodes’ and edges’ attribute-sets (Sec. 2.2).
Besides the Selection input common to most op-
erations, attribute operations have also one or several
attribute-plane names as inputs. These names refer to
attribute-planes that the operation reads and/or writes, as
follows.

3.4.1 Metrics

RE metrics are actually attribute editing operations. Ex-
amples of metrics include structural metrics, such as
computing the number of provisions, requirements, and
internalisations for a node [6, 1]. A metric can have two

types of outputs: an attribute-plane for metrics that com-
pute a new attribute for every node in the input Selec-
tion, or a unique value that characterises the input Se-
lection as a whole, e.g. the cyclomatic number met-
ric.

The above framework is significantly more flexible
than the one provided by many existing RE tools. In
short, it is easy to customise:

� the metric implementation. Usual node and edge
based metrics have less than 10-50 lines of C++
code.

� the metric’s parameters. The nodes and edges to ap-
ply the metric on are specified as selections created
by any selection operation (Sec. 3.1). The attributes
used to compute the metric on and to store the metric
into are specified as attribute names. In this way, the
metric implementation, the node and edge attribute
implementation, and the selection implementation
are all decoupled from each other.

3.4.2 Graph Layout

Graph layout operations are the basis of most RE data vi-
sualisations. These operations compute 2D or 3D coor-
dinates for a selection of nodes and edges. Once such a
layout is computed, the selected nodes and edges can be
visualised, as described separately in Sec. 4.

We treat layout operations as attribute editing opera-
tions for several reasons. Computing a layout means,
by definition, computing a position attribute for a set of
nodes and/or edges. Treating the layout task as a normal
attribute editing operations allows us immediately to:

� choose a desired layout type from a palette of avail-
able graph layouts.

� apply different layouts to different subsets of the
graph. For example, a level-selection is best layed
out with a spring embedder layout [18], whereas a
call graph is best layed out with a Sugiyama layout
[23, 11].

� combine different layouts. There is clearly no best
layout available for any situation. Often it is best to
construct a layout incrementally, i.e. apply several
layouts sequentially to refine the same set of posi-
tions.

� modularise the toolkit implementation by decou-
pling the layout computation from the graph visu-
alisation.

So far, we have implemented five layout operations, as
follows (see also Fig. 8).



Figure 8: Software visualisation. Spring-embedder and tree-like layouts (top row). Vertical slice and 3D level layout
(bottom row).

1. Tree-like layout: This layout treats the input
selection as a directed graph. The selected nodes are
arranged on levels in two dimensions such that the
number of edge crossings is minimised [23]. We im-
plement this layout based on the AT&T dot software
[11]. We have conducted several tests out of which the
dot software has run faster and more robustly for large
graphs, and produced visually better layouts than other
similar software such as [6, 7].

2. Spring embedder layout: This layout is based
on a physical model that tries to minimise the edges’
lengths with respect to the nodes’ positions [10, 18].
We implement this layout based on the AT&T neato
software provided by AT&T [10]. The performances
of neato are similar to dot’s. We provide a second
spring embedder layout based on the GEM algorithm
[18]. Although functionally similar to neato, GEM
implements different heuristics and has different control
parameters than neato. We have sometimes experi-
enced shorter running times and better visual results with
GEM, especially for large, densely connected graphs.
However, GEM is more sensitive to the layout parameters
choice that neato. It is thus the toolkit user’s choice

whether to apply the one or the other.

3. Grid layout: This operation lays out the se-
lected graph on a 2D regular grid. No attempt is done
to minimise the edges’ lengths or number of crossings.
This layout is a fast, simple tool, optimal for small
graphs or as a preprocessing phase to applying a more
complex layout.

4. Random layout: This operation lays out the se-
lected graph at random locations in 2D or 3D. The
behaviour and usage of this layout is very similar to the
grid layout.

5. Stacked layout: This operation lays out a se-
lection spanning several levels of a (k,2)-digraph by
applying one of the previous layouts per level and then
stacking the layed out levels above each other in 3D.
Stacked layouts are an effective way to visualise both the
horizontal and vertical relationships of a (k,2)-digraph.

Adding new layouts to the toolkit is a reasonably sim-
ple task. The above layouts have been coded or encap-
sulated in no more than 100 C++ lines each, whereas the
implementation of some layouts such asdot andneato
exceeds 10000 C lines.
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4 Mapping Operations

Mapping operations serve three purposes:

� visualisation: Mapping operations produce visual
representations of the graph data. interaction: The
visual representations can be interactively modified
by the user.

� export: Mapping operations export the graph data to
third parties e.g. for further processing or storage.

4.1 Data Visualisation

Visualisation operations have four components: map-
pers, viewers, glyph factories, and glyphs. These are im-
plemented in our toolkit by the C++ classes with similar
names (Fig. 9). Visualisation is based in our toolkit on the
Open Inventor [28] graphics C++ library. As compared
to other lower level graphics toolkits such as OpenGL, In-
ventor offers sophisticated mechanisms for object direct
manipulation and programmatic construction that con-
siderably simplify the programming of the visual inter-
face of our toolkit. Figures 8 and 10 show several snap-
shots from graph visualisations created with our toolkit.

4.1.1 The Glyph Mapper

The central visualisation component is the mapper, im-
plemented in our toolkit by theMapperBaseC++ class.
A mapper takes a Selection as input and produces an
Inventor scene graph as output. The scene graph can be
then interactively manipulated in several Inventor viewer
windows. Specific MapperBase subclasses implement
specific ways to construct the scene graph. One such sub-
class is theGlyphMapper that constructs a visual graph
by creating one glyph for each node and edge in the input
selection. These glyphs are then positioned at the 2D or
3D positions provided by an attribute plane of the nodes
and edges. This attribute-plane is constructed prior to the
mapping by a layout operation (see Sec. 3.4.2 and Fig. 3).

Figure 10: Usage of glyphs for software graph visual-
isation. Three types of glyphs (cones,cubes, and balls)
are defined and associated with different node types. The
glyph sizes reflect the nodes’ number of edges.

4.1.2 The Glyphs

A glyph is a 2D or 3D graphical object that a
GlyphMapper builds to visualise a node or edge.
The glyphs’ graphical properties reflect the node or
edge attributes, as described next. This association is
implemented by the GlyphFactory class. A Glyph-
Factory constructs a glyph given a concrete node
or edge. Specific GlyphFactory subclasses build
glyphs construction from nodes in various ways. For ex-
ample, we provide a simple DefaultGlyphFactory
class that builds a cube glyph for a node, respectively
a line glyph for an edge. Every GlyphFactory
subclass may provide a number of named parameters.
The meaning of these parameters is specific to each
subclass. For example, a ConeGlyphFactory sub-
class declares two parameters ”angle” and ”radius” that
control the angle, respectively the radius of a 3D cone
glyph. The user can associate these parameters with
attribute-names to express which graph attributes are
mapped to which glyph graphical parameters. Figure 10
shows a visualisation of a software system architecture
in which the node type (package,class,function) maps to
the glyph type (cube,cone,ball) and the node’s number-
of-lines attribute maps to the glyph size. Choosing the



association between the node and edge attributes and
their glyphs’ graphical properties is a powerful manner
to visualise the graph data [7].

Summarising, the GlyphMapper offers three ways
to control the mapping of the graph data to visual objects:

� by specifying the MapperBase subclass that
builds the Inventor scene graph; by choosing spe-
cific GlyphFactory objects that create specific
visual representations for nodes and edges;

� by specifying the mapping between the graphical
parameters of the GlyphFactory objects and the
nodes’ and edges’ attribute names.

This design offers considerable freedom in produc-
ing a large class of visualisations. The separation of the
glyph placement, done in the layout phase, and the glyph
construction, done in the mapping phase, is a simple
but powerful way in specifying the visualisation. New
glyphs can be developed without any concern for how
they are placed, whereas new layout tools can be added
to operate on existing glyphs. Although relatively new in
the software visualisation area, the mapper-glyph design
has been used in the scientific visualisation community
[26] where it has proven to be very flexible.

4.2 The Highlight Selection

Viewers function both as output components, by display-
ing their input selection, but also as input components, by
editing a highlight selection (Fig. 9), as described next.
The highlight selection is a subset of the input selection
that is displayed in a special manner (the current imple-
mentation uses a special colour and drawing style). This
is shown in the lower-right image Fig. 8 where the middle
node layer has been selected by the user. The highlight
selection can be edited interactively by the end users, as
explained next.

4.3 The Viewer

A viewer is an Inventor component that displays a scene
graph constructed by a MapperBase. Several viewers
are available that offer different mechanisms for interac-
tive navigation in the visual space, the choice between
parallel and perspective projection, and other visualisa-
tion customisations [28]. Viewers may have an input role
too. Specific Viewer subclasses may respond to user
events, such as mouse clicks an drags. Viewers use
this mechanism to enable end users to edit, by mouse
clicks, the highlight selection of their MapperBases
upon user interaction. As the highlight selection is auto-
matically modified upon these events, other parts of the

application can execute specific actions on the edited se-
lection. For example, interactive node aggregation can be
quickly implemented by applying an aggregation opera-
tion (Sec. 3.3.2) on the highlight selection object. Simi-
larly, one can examine, delete, hide, interactively lay out,
or apply metrics on the highlight selection.

5 User Interaction and Scripting

The toolkit core architecture described so far is imple-
mented as a C++ class library. However, the main
strengths of the toolkit are better leveraged when it is
used within a dynamic prototyping environment. For
this purpose, we provide a Tcl interface to the toolkit
C++ API and add several custom Tk-based graphical user
interfaces (GUIs) to build a complete integrated appli-
cation. The GUIs provide simple access to commonly
used functionality, such as examining and editing node
attributes, selection objects, domain models, and view-
ers, loading and saving data, and so on (Fig. 11).

This GUI front-end is quite similar to RE integrated
tools such as Rigi [6] or VANISH [7]. All these sys-
tems share an architecture based on a compiled core that
provides a graph data representation and several opera-
tions, and a scripting and GUI layer built atop of this
core. However, several differences are to be mentioned.
First, our toolkit’s core architecture is based on a few
orthogonal components (graph, selections, operations,
mappers, glyphs, and viewers) that have only simple in-
teractions, and interdependencies (Fig. 3). Flexibility
and custom adaptation are provided by subclassing and
composition of these basic components. For example,
the script shown in the background window of Fig. 11,
used to produce the graph visualisation shown in Fig. 10,
contains about 10 Tcl lines. In contrast, Rigi [6] uses a
monolithic core architecture. Although adaptable via Tcl
scripts, this architecture offers no subclassing or compo-
sition mechanisms for the core itself. It is not possible,
for example, to change the graphic glyphs or the interac-
tive selection policy without recoding the core. Similarly,
adding a new layout algorithm, domain model represen-
tation, or metric involves a low level API to access nodes
and edges, as Rigi has no notion of manipulating these
as selections. In contrast, VANISH [7] provides a way
to build custom glyphs very similar to our GlyphFac-
tory class (Sec. 4.1.2). However, VANISH uses domain
models based on compiled C++ classes which prove in-
flexible for our targeted RE scenarios (Sec. 2.4).



Figure 11: Tcl/Tk interface of the integrated reverse engineering application

Figure 12: Mobile telephone software visualisation. Entire system (left) and detail (right)

6 Applications

We have used the presented integrated GUI application
for the exploration of reverse engineering data obtained
from the software systems built at Nokia. In the first pass,
an attributed graph is extracted from the original Java
program source code. This graph contains various low-
level software entities such as functions, classes, files,
and packages, which represent the graph nodes. Rela-
tionships such as ’uses’, ’contains’, and ’calls’ are en-
coded by graph arcs. Finally, various attributes such as
object names, number of code lines, version numbers,
etc are stored as node attributes. Next, this graph data is
loaded in out RE tool as a RSF file [6]. From this point,
the operation pipeline described in Sec. 1.3, i.e. selec-
tion, aggregation, metric computation, layout, mapping,
and viewing, is executed.

Figure 12 (left) shows a selection of 10% of the whole
extracted graph, visualised with a spring embedder lay-

out. It is easy to see that the about 900 software entities
shown in this view are grouped in several independent
clusters that correspond to the different subsystems in the
original software. The largest subsystem, shown in the
lower left part of the figure, was selected interactively by
the user and then displayed separately in a second viewer,
shown in the right image. In this image, we can easily
detect the ’bridge’ components of the software system as
being those nodes that connect the large, densely coupled
subgraphs.

The whole visualisation scenario, starting from the
RSF data delivered by the code analyser, took about 5
minutes to build. This implied the execution, via both
the tool’s GUI and its Tcl command-line input, of less
than 20 operations of the ones described in Sec. 1.3. To
produce the zoomed-in image shown on the right, a Tcl
procedure of less than 15 lines was written that takes the
highlight selection output of the left viewer (Sec. 4.2, ap-
plies a spring embedder layout, maps it, and views it in



a new viewer instance. To visualise node details, such
as attrib� ute names and values, we have written a second
12-line Tcl procedure that opens a inspection GUI win-
dow (as shown in Fig. 11 middle). this procedure is ac-
tivated on the changing of the highlight selection in the
detail viewer. Visualising node details is thus easily done
by clicking on the desired node in this viewer.

Overall, the usage of our RE tool proved to be more
flexible than using the Rigi system, for the same case
data, both for the end user that issues GUI or Tcl com-
mands and for the developer that adds new functionality
to the tool. The most time-consuming part of the exe-
cuted scenarios was the layout computation. The layout
implementations we use work reasonably fast for a few
hundreds of nodes. For larger graphs, one has to apply
several selection and/or aggregation operations to reduce
the size of the data, prior to the layout and visualisation
stages.

7 Conclusion and Future Work

we have presented a new architecture for building vi-
sual RE tools. The presented architecture makes it easy
to construct several RE scenarios by compositing and/or
subclassing a set of given software components. These
components model the data and operations present in the
abstract RE framework described by several authors. RE
data is represented as a generic attributed graph, which
allows a flexible way to define most data gathered from
the program analysis stage. The presented architecture
classifies the RE operations in graph editing, selections,
layout, glyph mapping, and viewing. Functionally, these
operations model respectively structural aggregation and
metrics computations, queries and filtering, and con-
structing a visual representation for the data.

The flexibility of the presented architecture reflects it-
self on two levels. First, end users can easily define cus-
tom data investigation scenarios simply by applying the
provided operations in different orders with different pa-
rameters. Our architecture supports this scenario, as op-
erations are only indirectly coupled by sharing the same
graph data structure. Secondly, developers can easily de-
fine custom operations by subclassing the already im-
plemented operations or operation interfaces. The loose
coupling between operations makes their code localised
and limited in complexity - the about 40 operations we
have implemented have each on the average 20 to 40
lines of C++ or Tcl code. The architecture promotes a
separation of concerns for the different operation types
that makes it natural for developers to write small, in-
dependent operations. Usually written in C++ for per-
formance, such core operations are then easily assem-

bled into larger, more specific operations written in inter-
preted Tcl.

Overall, the implementation of the presented archi-
tecture has about 8000 C++ lines grouped in around 50
classes and took four man-months development time.
The toolkit implements around 30 operations (5 data
readers, 4 data writers, 12 structure editing and metrics
operations, 6 layout operations, and about 10 mapping
operations). The GUI-based integrated application built
atop of the toolkit adds around 500 Tcl lines to the C++
core and is already easier to customise and use than other
systems with a more rigid architecture, such as [6, 7]. As
a last comment, we believe that the analysis of the archi-
tectural aspects involved in building RE tools performed
in this paper is important for the development of flexible,
customisable RE applications.

Our main future work is targeted at providing domain-
specific operations, such as graph simplification, layout,
and glyph mapping, for the domain models used at Nokia
for describing their current software architectures. Our
RE system will thus serve both as a tool for investiga-
tion of the concrete mobile telephony software and as
a testbed for prototyping new information visualisation
techniques.
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