
Architecture Recovery for Product Families

Martin Pinzger1, Harald Gall1, Jean-Francois Girard2, Jens Knodel2,
Claudio Riva3, Wim Pasman4, Chris Broerse4, Jan Gerben Wijnstra5

1Distributed Systems Group, Vienna University of Technology, Vienna, Austria
{pinzger, gall}@infosys.tuwien.ac.at

2Institute for Experimental Software Engineering, Fraunhofer, Kaiserslautern, Germany
{girard, knodel}@iese.fhg.de

3Software Architecture Group, Nokia Research Center, Helsinki, Finland
claudio.riva@nokia.at

4Philips Medical Systems, Eindhoven, The Netherlands
{wim.pasman, chris.broerse}@philips.com

5Philips Research Laboratories, Eindhoven, The Netherlands
jangerben.wijnstra@philips.com

Abstract. Software product families are rarely created right away but they
emerge when a domain becomes mature enough to sustain their long-term
investments. The typical pattern is to start with a small set of products to
quickly enter a new market. As soon as the business proves to be successful
new investments are directed to consolidating the software assets. The various
products are migrated towards a flexible platform where the assets are shared
and new products can be derived from. In order to create and maintain the
platform, the organization needs to carry out several activities such as
recovering the architectures of single products and product families, designing
the reference architecture, isolating the variable parts, and generalizing software
components. In this paper, we introduce a product family construction process
that exploits related systems and product families, and we describe methods and
tools used. We also present an approach for classifying platforms according to
platform coverage and variation and describe three techniques to handle
variability across single products and whole product families.

1 Introduction

Software product families aim at sharing more than the design effort (i.e. code,
designs, requirements, and test cases) to reduce development costs and increase the
number of product introduction. Typically, families are built on top of existing,
related software systems whereas the common artifacts among these systems are
integrated to a common asset base. In terms of software architecture these common
assets are architectural artifacts used to design the reference architecture of resulting
product families. We refer to reference architecture as core architecture for
subsequent product families (and products) independently of implementation. A
product family architecture follows a reference architecture and is the basis for single

products with respect to achieving maximum sharing of parts in the implementation
[8].

Constructing a reference architecture out of related products and existing product
families basically is a non-trivial task, because knowledge and experiences from
previous architectural designs cannot be transferred explicitly. Additionally,
architecture descriptions are often not available or insufficient and diverge from
implemented concrete architectures. And there is a lack of commonality analysis
methodologies to determine the common architectural artifacts that are mandatory for
the construction of the reference architecture. As a consequence the amount of manual
work is high and the costs of introducing a product family approach increase.

In the context of the European project CAFÉ (from Concepts to Application in
system-Family Engineering) [5] we concentrated on these research issues along
constructing reference architectures and product family architectures. In this paper we
briefly describe our easy-to-use, yet flexible process for reference architecture
construction and point out new techniques that aid architects in this context. Our
construction process combines techniques and tools that are used to analyze related
systems, determine common assets, and integrate these assets along with new ones
into the design of a reference architecture.

Variability is a key issue in designing the reference architecture and building the
platform. We address these issues and describe an approach for classifying platforms
according to two properties: (1) coverage of the platform as indicator of how much
additional work is needed to make a specific family member based on the assets in the
platform; (2) type of variation mechanism as indicator of how easy it is to
produce/develop a specific family member and what might be the impact of
unforeseen requirements that must be supported. The outcome of our classification is
a guideline that can be used to select the proper variation mechanism for a product
family platform. Further, we report on experiences we gained through an investigation
of a number of existing product families and in particular describe three approaches to
handle changes to platforms.

The remainder of this paper is organized as follows: Section 2 introduces our
reference architecture construction process and describes each phase in detail. In
Section 3 we describe our approach for classifying platforms according platform
coverage and variation. Section 4 shows three approaches to handle changes to
platforms and how to adapt the reference architecture. Results are presented in
Section 5 and Section 6 draws the conclusions and indicates future work.

2 Reference Architecture Construction By Exploiting Related
Prior Systems

Product families are rarely developed on a green meadow; on the contrary, they are
most often based on pre-existing systems. An integral part of every product family is
the reference architecture that specifies the fundamental architectural concepts in a
domain to which resulting product families and products have to conform to [4, 8].

We have developed a reference architecture construction approach that exploits
related existing systems and takes into account knowledge gained out of the

individual systems and experiences made with already field-tested solutions and
reference architecture fragments obtained in prior systems. Figure 1 depicts our
construction process. Four major steps are performed:

• Determine architectural views and concepts
• Architecture recovery
• Analysis of recovered architecture
• Design of a reference architecture

1

Determine
Architectural
Views and
Concepts

2

Architecture
Recovery

3

Analysis of
Recovered
Architecture

4

Design of a
Reference

Architecture

Scope

Business
Goals

Selected
Views

Recovered
Views

Reference
Architecture
Fragments

Scope

Software
System

Product and
Domain
InformationProduct and

Domain
Information

Architecture
Descriptions

Reference
Architecture

Feedback

Figure 1: Reference architecture construction process.

In the following sections we describe each process step in more detail and point out
techniques and tools we used (the subsection numbers correspond to the steps in
Figure 1).

2.1 Determine Architectural Views and Concepts

For the recovery of the architecture of each individual system, engineers have to agree
upon the architectural aspects to be extracted and upon which architectural description
language to use for representing them. Basically, the description language should be
the same among all individual systems to ease and facilitate the application of
commonality analysis (tools).

In the context of our architecture recovery approach we refer to architectural
aspects as architectural concepts and architectural views. Regarding architectural
concepts we particularly concentrate on the architectural style by which a software
system is built. The style defines the types of building blocks that can be used to
compose the system (e.g. components, classes, applications) and the communication
infrastructure that enables the components to interact at runtime (e.g. software busses,
remote procedure calls, function calls) [12]. Such concepts represent the way
developers think of a system, and they are first class entities the terminology of the
reconstruction process.

Architectural views such as described by Hofmeister et al. [5] and Kruchten [10]
are abstractions of underlying entities (e.g. source model entities) and each view

focuses on certain properties of the software architecture such as, for example,
structure, control, or communication.

In order to select the proper architectural concepts the business goals and the scope
of the emerging reference architecture of planned product families are taken into
account. In terms of our architecture recovery approach we focus on the extraction of
the following set of architectural views:

• Component view to show the high-level dependencies among the logical
packages (groups of components).

• Development view to show the source code organization and include
dependencies.

• Task view to show the grouping of components in different OS tasks and the
inter-task communication due to the exchange of messages.

• Management view to show the organization of the component factories and
their dependencies (caused by component usage among different factories).

• Organizational view to show the geographical distribution of the components
in the development sites.

• Feature view to show the implementation of a set of features at the component
level.

The decision, which views should be selected for reconstruction, is important to the

next steps of our approach, since the selected views form the foundation of the
following activities.

2.2 Architecture Recovery

The architecture of each related prior individual software system has to be recovered
next. The architecture will be documented in terms of the selected architectural views
and elicited concepts. The architecture recovery step is strongly influenced by product
and domain information (e.g. domain expert input, requirements specification, user
manuals, (mostly outdated) design documentation, etc).

Figure 2 depicts the process we use for the extraction of architectural concepts and
views. It consist of four major phases whereas we start with the definition of
architectural concepts based on existing design documentation and expert knowledge
from designers and developers of the system.

The second step is concerned with creating a raw model of the system containing
the basic facts about the system at a low level of abstraction. The facts can be
extracted with a variety of methods: lexical or parser-based tools for analyzing the
source code, profiling tools for the dynamic information, manual analysis of design
documents, and interviews with the developers. The raw model is typically a large
and unstructured data set.

In the third step we enrich the model by classifying and structuring the model
elements in hierarchies and by removing architecturally irrelevant information. This
task requires the human input of the domain experts and combines the raw facts with
the domain-specific knowledge of the system. The result is the selected set of
architectural views that describe specific concerns of the architecture.

The fourth step is about visualization of the results. Basically, we rely on three
visualization formats: hierarchical relational graphs for navigating and manipulating
the graphs; hyperlinked web documents for publishing the architectural models on the
web; and UML diagrams that can be imported in traditional CASE tools (e.g. Rational
Rose or Together).

Apparently, the process step of abstracting meaningful higher-level views from the
low-level model or source code is the most complex task. A lack of appropriate
(semi)automatic tools increases manual work. To reduce this manual effort we have
developed techniques along with tools that were integrated into our reconstruction
process. In following paragraphs we briefly describe three techniques addressing the
abstraction issue and point out reference architecture construction relevance. For a
detailed description we refer the reader to related publications [2, 16, 17].

Semi-Automatic Component Recovery
Software components represent basic building blocks (i.e. assets) of software systems
that can be reused in single products and products of product families. For the
construction of a common asset base, the product family architecture, and the more
abstract reference architecture knowledge about components realized by each product
family candidate system is mandatory. A first step towards this is the extraction of
potential software components and the relationships between them.

We developed a semi-automatically approach that extracts components from
source code [2]. Our approach is composed of three stages: initialization,
reconstruction, and analysis. First, the initialization stage involves identifying the
desired results and collecting information about the context of the architecture. The
context poses demands and constraints on the architecture description to be recovered.
Then, the reconstruction stage involves semi-automatically extracting one or more

3. Abstraction

1. Definition of Architectural Concepts
2. Data gathering

Develop

Sources of information:
- Documentation
- Experts
- Source Code

Architecturally
Signifcant
Concepts

Extract

Low level
model

Source Code

1. Model Refinement
2. Composition rules
3. View Selection

Architectural
Model

Domain
Knowledge Hierarchical graphs

UML logical diagrams
Message sequence charts
HTML reports

4. Visualisation

Figure 2: Architecture Reconstruction Process.

architectural views and reviewing them with the architecture expert. The goal of the
extraction step is to obtain an as accurate description of the elements of the system
and their interrelations as needed, and to build abstracted views on top of them. The
last stage involves analyzing the results. The produced views are reviewed and
refined, if necessary, with a group of experts.

Pattern-Supported Architecture Recovery
Architectural styles and patterns represent widely observed and occurring
architectural concepts that aid engineers in designing software architectures. Although
styles do not imply their implementation there are certain implementation patterns
that are typically used by engineers to realize an architectural style.

In our pattern-supported architecture recovery approach we concentrate on the
extraction of such implementation patterns from source code and related files (e.g.
meta data information, configuration files) and the lower-level model. Often
important architecture related information about the realization of a particular style is
specified in configuration files such as, for example, the configuration of which and
how components communicate with each other.

Concerning textual data files we apply extended string pattern matching as
described in [16, 17] and demonstrated in [9, 15]. Our lexical analysis tool facilitates
the specification of simple and complex pattern definitions and allows for the
generation of user-defined output formats. Extracted information about matched
pattern instances result in “pattern views” that indicate the use of a particular
architectural style. Further, the extracted information complements lower-level source
models extracted by parsers [9].

For the investigation of lower-level models we use relational algebra tools such as
Grok [7]. Based on domain and expert knowledge engineers specify new or load
existing pattern definitions from a pattern repository. Similar to the lexical analysis
technique described before matched pattern instances are indicators for certain
architectural styles.

Combining the results of both analysis techniques, engineers gain information
about the architecture and implementation of each product family candidate system
that is mandatory for the integration and the construction of a reference architecture.

2.3 Analysis of Recovered Architecture

This task aims at producing useful information for the design of the reference
architecture by detailed analysis and comparison of the prior software systems. A
comparison of multiple systems is possible and reasonable, because all prior systems
are related to each other:

• They implement similar features to a certain degree.
• They operate in the same set of domains.
• They provide similar functionality.
• They were developed within the same organization (most of the time).
In the following two sections we describe the basics and the process of our analysis

approach that compares and assesses the software architectures of product family
candidate systems.

Principles and Goals of Architecture Comparison
The comparison is based on the architectural descriptions of the individual systems
(or partial descriptions containing most relevant information). The goal is to learn
about different solutions applied in the same domain, to identify advantages and
drawbacks of the solutions, and to rate the solutions with respect to requirements of
the product family. By achieving these goals, architecture comparisons contribute to
the fulfillment of the given quality goals in the design process of reference
architectures.

Product and domain information is used to answer questions when comparing the
architecture of different systems and extracting plausible rationales. Existing
architecture descriptions are rarely up-to-date or rarely contain all the needed views.
However, they offer an anchor point from which the reverse architect produces a
description close to the expert mental model of the system. Explicitly recording the
concepts, features and functionality expected in the system can guide the reverse
architect and help the production of a description expressed in the terms used by
experts.

The experts then annotate the architecture descriptions with rationales. When
comparing the prior systems’ architecture, more detailed information about concepts,
solutions or additional views may be needed. This has to be fulfilled by another
iteration of architecture recovery. The architecture descriptions are then completed by
the newly gained information (e.g., trade-offs involved in the choices of multiple
system, integration strategies).

The infrastructure and the architecture style present in the individual systems
constitute key inputs to the design of the reference architecture. In addition they offer
a good point to anchor initial comparisons. Analyzing the recovered architectures of
different systems has the goal to find out how and why they address the requirements
in the way they do. It also documents the implementation strategies employed by each
system to address a given concern and evaluates their success in their respective
context and compares the strategies with respect to criteria relevant to the product
family. It captures the conjectured rationales and trade-offs involved in selecting the
strategies used in a system (similar to Parnas’ idea of a “rational development process
and why we should fake it” [12]).

Architecture Comparison Process
According to the principles and goals described in the previous section we developed
an iterative architecture comparison process as depicted in Figure 3. The process
consists of five major steps:

1. Analysis of Individual Systems:
The process starts with an analysis of all given individual systems (the later
phase of architecture recovery). The architecture of each system is recovered
with the help of the techniques mentioned above. The goal of this step is to
learn about the essential characteristics of each software system. There are two
main categories: Success factors (SF) report about means, patterns, and
strategies that worked well, i.e. with the help of these factors advantages were
gained. Success factors of different solutions provide essential input to the
design process of the reference architecture. The software architect can learn
about what worked out well, and why it was a success. Critical aspects (CA)
are circumstances (e.g., a pattern, or infrastructure) that leaded to negative,
sensitive consequences. For the design process of the reference architecture, it
is necessary to handle those aspects with caution (or to avoid them at all if
possible).

2. Transform Success Factors and Critical Aspects into Requests:
In the second step, the success factors and the critical aspects are transformed
into scenarios, if possible. These scenarios extend the scenario list built when
designing a reference architecture. A scenario captures functional and quality
requirements of the product family the architecture is designed for.

3. Prioritize Requests:
This optional step orders the scenarios with regard to their PuLSE.DSSA
priorities (see Section 2.4), so that potentially important ones are processed
first. As the order in which scenarios are addressed is very important, those
scenarios that are considered to have the highest significance for the
architecture should be selected first.

4. Comparison of Different Systems:
For a comparison, three activities have to be performed one after the other:

1

Analysis of
Individual
System

2

Transform SF/
CA into

Requests
4

Comparison

5

Feedback

Sucess Factors
Critical Aspects

3

Prioritize
Request

Requests

Request

D1

Design
Reference

Architecture
(DSSA)

Request

Figure 3: The Architecture Comparison Process.

a. Select Systems:
To start, the software systems to be compared against each other have to
be selected. The elicitation of these comparison candidates is an activity,
which has to be performed carefully for two reasons. On the one hand,
the effort for comparing a sound set of comparison candidates is
significantly lower than comparing all systems. On the other hand,
choosing too few systems leads to more or less useful results in the
context of a product family

b. Detailed Analysis:
In the second activity, the selected systems underlie a detailed analysis
focusing on issues concerning the requests. For each system, it will be
analyzed how it addresses the requirements reflected in the request.
Several questions will be answered after this activity: why was it done
this way, what were the trade-offs, and how does the solution fulfill the
requirements.

c. Conditioning:
Each system will contribute to the concluding results, but the more
systems are compared, the more data about these systems is produced. To
reduce the amount of information, the results are conditioned so that the
most important data and the essential gains in experience are returned.

5. Feedback:
In the final step, feedback is integrated into the process. A new iteration may
be started because of the feedback. Or the information gained in several
feedbacks may lead to new insights about the product family context, so that
more information about some solutions is required. Due to the learning effects
during the detailed analysis, new scenarios refine the design process of the
reference architecture.

The resulting reference architecture should be of a higher quality when using

recovered information gained from prior systems than when designing a new one
from scratch. Exploiting the pre-existing, individual software systems is worthwhile,
since it helps to understand success factors and critical aspects of applied solutions in
individual systems. Furthermore, it can avoid bottlenecks by already knowing about
consequences, and it promotes the learning about applied solutions. The detailed
analysis of recovered architectural descriptions and the comparison of different but
related systems are crucial in order to benefit from the existing systems by reusing
implemented knowledge, as well as field-tested architectural means (e.g., patterns,
strategies and infrastructure, etc.). Hence, we are able to draw conclusions about the
applied solutions of the individual systems within their specific context and we learn
about the consequences of specific solutions, and therefore this step contributes
substantially to the design process of the reference architecture.

2.4 Design of Reference Architecture

PuLSE-DSSA [1] is an iterative and scenario-based method for the design of
reference architectures. The basic ideas of PuLSE-DSSA are to develop a reference
architecture incrementally by applying scenarios in decreasing order of architectural
significance and to integrate evaluation into architecture creation. The quality of the
architecture is monitored and assured in each development iteration. Figure 4 shows
the main inputs to the PuLSE-DSSA method. In order to design a reference
architecture the architect has to consider information obtained through architecture
recovery as well as a prioritized list of business goals, given functional and quality
requirements, and architectural means and patterns. The inputs are used to produce a
reference architecture that satisfies the given goals and requirements of the product
family and that is documented using a number of previously selected or defined
architectural views. The PuLSE-DSSA method guides software architects in
systematically making design decisions based on identified and documented business
and quality goals and in assessing whether the architecture under design really
satisfies the requirements. The design process might request to deepen the analysis
and comparison of the architecture of prior systems, to refine views, or to produce
other specialized views.

The following architecture recovery information is gained during the analysis of
recovered architectures and fed into the design process of the reference architecture:

• Rationales:
Solutions in individual systems have been applied in certain contexts to fulfill
requirements. Learning about the rationales behind these solutions can help
when facing similar or the same requirements for the whole product family.

• Means and Patterns:

Product Family
Architecture Design

Architecture
Recovery Information

Business
Goals

Functional
Requirements

Reference Architecture
Description

Quality
Requirements

Means and
Patterns

Figure 4: Inputs and Outputs of the Reference Architecture Design Process.

Architectural means and patterns used in existing systems and identified in
architecture recovery can extend the collection from which the architect can
choose in the design process of the reference architecture. The catalogue of
means and patterns is expected to come from three different information
sources, collected from literature, gathered from other architecture design
projects, or recovered from existing systems.

• Consequences and pattern instantiations:
 Similar to the previous step, information about patterns and their instantiation
obtained during architecture analysis of recovered systems can be used as an
input when designing reference architectures. Consequences resulting from the
instantiation of a specific pattern should be considered when designing the
reference architecture. A consequence of a pattern instantiation for instance
may be an impact on a quality goal.

• Evaluation of the architecture:
The evaluation of the reference architecture with respect to functional and
quality requirements and the achievement of business goals can benefit from
existing individual systems, since the decision whether or not a requirement or
goal is fulfilled can not always be answered on the architectural level but by
experimentation with a prior system that fulfills the goal with the same
underlying concept.

• Documentation:
To document the reference architecture of a product family, recovered
architecture descriptions of individual systems can be reused, when the
reference architecture and the individual systems have an architectural
fragment in common (e.g., when one of the prior systems forms the basis for
the product family, or when distinguishable fragments of a single system
contribute to the product family).

The knowledge gained in the analysis of the recovered architectures is integrated

into the design process of the reference architecture. The construction of the reference
architecture provides feedback on what is important for the design process, and which
views should be presented in more details.

3 Reference Architecture and the Platform Type

Based on the reference architecture the platform with reusable assets for the product
family will be built. The definition of the reference architecture and the platform is an
iterative process. The reference architecture can be considered as a high-level
description, whereas the platform contains the actual building blocks from which
members of the product family can be constructed.

Every product family will have its own unique context, for example a specific
business strategy and a specific application domain. As a consequence, each product
family approach has its own specific characteristics that fit in such a context. This
means again that the type of platform that is used for a product family must also be
tuned to this context. This leads to a vast range of platform types. In order to get a

grip on this range, we have analyzed a number of product families and their
platforms. This analysis led to two dimensions for classifying platforms, namely:

• coverage of the platform
• type of variation mechanism

These dimensions will aid the classification of product family approaches and will

both facilitate the selection of a new platform approach for a particular context and
support the evaluation of existing approaches. When considering the four steps for the
construction of a reference architecture as discussed above, these dimensions can be
used at several places. For example in the fourth step where the reference architecture
is designed, the two dimensions provide guidelines on which variation mechanisms to
use and which platform coverage to apply. Both dimensions also support the
evaluation of a reference architecture. Both dimensions are explained below; more on
this topic can be found in [24].

3.1 Platform Coverage

Roughly speaking, the coverage indicates the relation between the size of the platform
and the additional artifacts that are required to make a complete product within the
family. The decision about the coverage of the platform is influenced by several
factors including non-technical ones related to business, process and organization (see
also [23]).

To explain the platform coverage in some more detail, the concept of subdomains
within an architecture is important. By subdomain we mean a sub area within a
system that requires some specific knowledge, for example the image processing
subdomain or the image acquisition subdomain in a medical imaging system. These
subdomains may deal with application knowledge relating to the end user, or with
technical knowledge relating to the peripheral hardware or computing infrastructure
knowledge. In the context of design and realization, such a subdomain usually results
in one (or a few) modules/components with a well-defined interface. In Figure 5, a
schematic reference architecture is shown with different coverages for the
subsystems. The two leftmost subsystems are completely covered, indicated by the

completely
covered

subdomains

partially
covered

subdomains

not covered
subdomains

Figure 5: Reference Architecture and Coverage of Subdomains.

gray color. The two subsystems next to them are partly covered, so that specific
functionality has to be added to make a concrete product. The two rightmost
subsystems have dotted lines, meaning the no generic functionality is provided for
them, but additional subsystems can be added to make concrete product.

Based on the subdomains we can now express the coverage of a platform. In our
study we had one product family that was set up in such a way that each delivered
family member contained the same software. As a consequence, the platform
contained all subsystems of the family, and each of these subsystems was covered
completely, resulting in a complete coverage. Another example was a platform that
contained all subsystems, but allowed the product development group to add specific
functionality to the subsystems. So all subsystems are covered, but the subsystems are
internally partially covered. Here, about 75% of the functionality was handled by the
platform, leaving 25% to be added by the product groups. A third example was a
platform that only dealt with a subset of the subdomains, and these subdomains were
only partly covered. A fourth situation is where a part of the subdomains are dealt
with, but these subdomains are completely covered. This leads to four areas in which
platform coverage can be classified, see Figure 6. It depends on the actual platform,
how much of the functionality is already realized inside the platform and how much
work still needs to be done by the product groups to make the specific products.

3.2 Variation Mechanisms

In the context of designing reference architectures variability is a key issue. The used
variability mechanisms influence the flexibility of the platform, the way specific
products can be made with it, the effort needed to make a product, etc. In our
investigation we encountered various types of variation mechanisms and classified
them in a two-dimensional space. This classification is made from an architectural
point-of-view:

• below architectural level
When an architect is defining an architecture, he/she amongst others defines
the main components from which the system will be built. These components
have interfaces via which they will interact. When the variation of the system

coverage of subdomains

coverage within
subdomains

complete partly

complete

partly

example 1

example 2 example 3

example 4

Figure 6: Classification of Platform Coverage.

stays within the components and does not impact the architecture, we classify
the mechanism as being below architectural level. Examples of mechanisms in
this category are configurable components, component frameworks with plug-
in components, or even components for which only the interface is defined.
The architect must be aware of the variation that can be realized within such
components and provides rules and guidelines on how to do so. But, the
variation is realized by the developers of the components.

• at architectural level
At the architectural level, components and interfaces are important entities,
along with rules and guidelines. The product family architect can identify the
components from which the system should be built. If the members of the
product family cannot be built from such a fixed set of components, another
possibility is to define a basic platform to which the development groups can
add their own specific components, preferably via predefined interfaces. A
third possibility is to capture important architectural concepts in interfaces.
The interfaces should then allow new components to work with each other,
even if they were not identified from the beginning. This allows addition of
new components to the system.

More information on this classification and the variation mechanisms can be found

in [24].

4 Component Generalization in Product Families

Technology for platforms is changing rapidly and requires adaptation of reference
architectures to make them resilient to these changes. The solution can be found by
making the whole or certain areas of the architecture of the product families more
explicit and especially pay attention to the variation mechanisms. Summarized, in
CAFÉ we considered the following approaches:

• Trace features to components to support migrating shareable features to the
platforms.

• Add a technology abstraction layer in the platform.
• Compare similar products families, to identify commonalities and extend the

framework of a product family to serve different families.

4.1 Feature-oriented reverse engineering

The definition of the term “feature” is often domain dependent and in the literature
there are several interpretations. We reference to the work of Tuner et al. [25] for an
extensive discussion of this definition. In this article, we use the term “feature” to
mean a “coherent and identifiable bundle of system functionality” that is visible to the
user via the user interface.

We distinguish between the problem domain and the solution domain. The problem
domain focuses on the user’s perspective of the system and describes the

requirements (functional and non-functional) that the system has to satisfy. The
solution domain is centered on the developer’s perspective and concerns with the
implementation of the system. The problem domain specifies what the system is
supposed to do. The solution domain specifies how the system achieves what is
promised. The features represent the contact point between the problem and the
solution domain. At this level, marketing people and developers can speak a common
language and they can understand each other.

Features (typically used to advertise the product) are implemented by particular
architectural elements (such as components, classes, functions). They also represent
the highest elements of abstraction we can decompose a system in the solution
domain. This leads to the concept of “feature oriented reverse engineering” proposed
by Turner et al. [25]. From a feature engineering perspective, the goal of reverse
engineering is to discover how the features have been implemented, what are they
interactions, or what are the necessary components for their execution. In the mobile
phone example, reverse engineering could be used to identify how the feature “make
call” has been implemented in a GSM and a 3G phone, or to discover how the feature
“receive call” interferes with game playing, or to recover the procedure that has been
used to set up a WAP connection with GPRS.

Understanding the implementation of the features is a crucial activity in the context
of a product family. Features represent reusable assets that are available in the
platform and are shared among different products. Each product development project
can select the platform features, configure them and integrate them in the products.
Features are combined together to create a particular product and they are presented in
the user interface (UI) in a simple and coherent way. This approach puts a strong
pressure on the integration phase and in the design of the UI. In particular, the
problems of feature interaction (functional or logical dependency between features)
are often unavoidable and difficult to control.

To avoid costly delays in the integration phase, we require
• to identify and specify the possible feature interactions as early as possible

during the design phase and
• to analyze the implementation of the features (and their interaction) during the

development of the product.

To tackle the first point Lorentsen et al. [11] have proposed a method for modeling
the feature interactions in mobile phones with explicit behavioral models of the
features. The approach is based on the Colored Petri Nets and allows the UI designers
to simulate particular features and analyze their behavior with automatically
generated Message Sequence Charts (MSC).

To support the second point, our reverse engineering technique is based on the
extraction of static and dynamic information from the implementation of the system.
The static information is extracted from the source code following the process
described in Section 2.2. The dynamic information is extracted by instrumenting the
system and tracing the execution of the features. The result is combined in the feature
view that describes the implementation of a set of features at the architectural level.
Our approach emphasizes the correct choice of architecturally significant concepts as
described in Section 2.1, the abstraction as the key activity for creating high-level

sequence diagrams, and relies on combining static and dynamic information in the
same architectural views [21].

Our method is based on the following steps:
1. Create a use case that covers the set of features under analysis.
2. Execute the use case on the instrumented system and trace all the relevant

information (such as function calls, messages, inter task communication,
memory accesses).

3. Create the feature view by combining the extracted traces with a high level
static view (typically, the component view or the task view).

4. Abstract the feature view by detecting interaction patterns to reduce its size.
5. Navigate the feature view by expanding/collapsing the participants and

messages of the MSC, by filtering un-relevant information and by slicing the
static views with particular dynamic scenarios.

This method allows us to derive insights about the implementation of the features

and to navigate them in a high level abstracted form.

4.2 Adding abstractions

An Operating System (OS) offers functionality towards all important system
resources such as memory, timers, synchronization and communication mechanisms,
I/O and underlying hardware, etc. Typically applications depend on this functionality
and build upon it. In small systems not many applications use the offered
functionality of the OS and if they do, designers and architects focus on a dependency
that is as small and thin as possible.

In larger systems however more applications depend on the OS functionality. This
increases the use of the OS and calls for a well-defined use of the offered
functionality. Systems may even grow to a point where more than one computer is
used and maybe even more than one OS. Rather than having software engineers to
cope with the differences between OS's, an Operating System Abstraction Layer
(OSAL) offers standardized functionality to all software engineers running on
different OS platforms.

Thus an OSAL helps in standardizing usage of OS functionality, one can focus on
solving domain problems rather then having to dig in OS differences. It even helps
when changing from one OS to another (although this a job you do not want to do
often). If an OSAL is build upon two different OS's, one will certainly run into
compromises. Compromises will most certainly be found in the following fields:
processes and threads, support for asynchronicity and real time behavior.

The easiest way to start an OSAL is to look at functionality widely used by all
applications in the entire system. OS functionality that meets this requirement is
usually: file I/O, memory management, synchronization principles, serial I/O and
sockets. By focusing on these aspects, one has a quick win: in a short period of time, a
large amount of functionality is abstracted which helps a lot of software engineers.

4.3 Generalization of a Framework

A product family is usually based on a platform, a set of common components and
interfaces to be shared amongst the various members of the product line. At the
beginning each of these components fits perfectly within the architecture of the
product line, adhering to its set of architectural rules and designed according to its
architectural paradigm(s). A common reuse problem occurs however when either the
scope of the product line (and with that its architecture) is significantly changed
(usually extended) or a component from it is extracted to be reused in the scope of
another (possibly also a product line) architecture. Now probably there will appear
architectural mismatches between the component and its new environment(s), which
can range from differences in architectural styles, interface mechanisms, technology,
etc. The component probably has to be redesigned to deal with two different
environments, a process in which also the evolution of the existing architectures and
possible compatibility issues play an important role. In this section we describe a case
from the medical imaging domain at Philips Medical Systems in which a component
developed in the context of single product family architecture is reused in a much
wider scope. It addresses both the architectural changes involved in this
generalization as well as aspects concerning backward compatibility.

Within the hospitals, more and more different imaging modalities with new
application areas are used. Examples of such modalities are X-ray, Computed
Tomography, Magnetic Resonance Imaging, and Ultra Sound. Furthermore, to give
the best treatment to the patient, it is important that the various modalities are
integrated in the hospital. This also poses more requirements on the servicing of this
equipment.

The component for remote access as described in this section was originally
developed within the context of the product family architecture for a single modality.
This component provides important field service functionality to improve customer
support (shorten reaction times) and lower overall service costs. It has been realized
as a component framework with plug-ins, allowing field service procedures for
specific hardware to be supported by specific plug-ins. After introduction of this
component it appeared very attractive to enlarge the scope of it to multiple modalities,
which needed the same type of functionality. However all of these modalities have of
course their own (product family) architectures.

A product family architecture effort was already under way aiming at the definition
of components for very generic (and non modality specific) functionality, see [22].
The main requirement for this architecture is that its components can be reused over
multiple modalities that each maintains their own private architectures. It was
therefore decided to lift the remote access level component to this level.

Moving the remote access component from its dedicated modality restricted
product family architecture to a broader scope introduced four main groups of
problems, which are discussed below.

• requirements matching
Historically, there exists a plethora of detailed differences between the field
service requirements for the different modalities, although the global service
requirements are of course very similar over all medical imaging equipment.
Fortunately the original set-up of the remote access component with its plug-

ins already allows a great differentiation since all the actual hardware related
tests are implemented in the plug-ins.

• compatibility requirements
The remote access component was already deployed in its original product
family architecture before it was elected for promotion to a much broader
scope. Furthermore extensive investments were made in the development of
the remote access plug-in components for this system. It is clear that the
generalization of the remote access component was not allowed to nullify these
investments.

• architectural mismatches
The architectural differences between the various modalities are quite large.
Decomposition, interfacing, general mechanisms, but also low level issues like
database access are very different from modality to modality. It is clear that the
introduction of a generic remote access component is only feasible when it
does not enforce a major turnover of the systems that want to incorporate it.
Another issue encountered in the analysis of differences is a large number of
more or less hidden dependencies of the framework on the original product
family it was designed for. The main dependencies are on the operating
system, the database, and mechanisms such as installation, registration and
licensing.

• technological differences
Several major technological differences exist between the various product lines
in which the remote access component is deployed. The most important
differences are in technologies such as operating systems, languages and
middleware that must be supported by the remote access component.

So, there are many aspects to be taken into account in the migration of the remote

access component to a wider scope. This is probably quite usual for this kind of
migration. Below, some choices to deal with these aspects are discussed.

• operating system, middleware and language
For the time being the generalized component will be realized on the Windows
platform, since this platform was used in most products. For the remote access
component, also the COM/.NET framework is used. It must be noted here that
this lock-in is circumvented for some of the generic components deployed in
medical systems. Any explicit reference to a single middleware model (such as
COM) in the core components is avoided. Separate wrapper layers are
developed to map the components to a certain required interface mechanism
like COM.

• dependencies to infrastructure mechanisms
The remote access framework was dependent on the infrastructure of the
original product family it was developed for, e.g. for installation. To break this
link a pragmatic solution has been chosen: the relevant parts of the
infrastructure have been copied to the context of the remote access component
and are maintained separately from the original product line they were
developed for initially.

• component interfacing
For the generic components that are reused within several modalities within

medical systems, a set of generic interfaces and so-called information models
have been defined. For example, interfaces exist for accessing patient or image
data, to using logging of configuration data. Also, an interface is defined for
the execution of a “job”. The interfaces themselves are small and limited with
all further information stored in data structures. The interface of a component
in this case consists of its methods and a detailed description of the data model
(called the information model) that goes with it. These principles are described
in more detail in [22].

What are now the consequences of this approach for the remote access component?

The original remote access component uses a strongly typed interface style with a
extensive set of interfaces and interface methods for all the different stages in a field
service procedure. This enforces a fixed order of activities, which is not desirable for
all modalities. Furthermore these broad interfaces impose a certain maintenance risk.
Finally they restrict the flexibility for other modalities to build user interfaces and
procedures according to their specification. Therefore a transfer to the much more
generic interface and information models described above is made.

When considering the four steps as discussed in Section 2, the focus has been on
the third and fourth step: the analysis of the different product families in which the
generalized component will be used and the design that has to make the reuse of this
component across multiple modalities possible. When considering the classifications
as mentioned in Section 3, the modality from which the remote access component was
taken has a high coverage. It uses amongst others component frameworks and plug-
ins to realize variation (just as for the remote access component). The product family
to which the remote access component has been transferred has a much broader
scope. As a consequence, the platform coverage is much lower, relatively speaking. In
this product family, generic interfaces are an important means for realizing variation
across the different modalities. But also the component framework mechanism is still
used for the remote access component. More on this generalization work can be found
in [18].

5 Results

In the CAFÉ project we developed methods, techniques and tools for architecture
recovery, product family and reference architecture construction, and component
generalization in the context of product families. In particular, we:

• introduced a reference architecture construction process (Section 2);
• extended and devised architecture recovery methods and techniques (Section

2.2);
• described platform classification mechanisms and created guidelines that aid in

platform selection (Section 3);
• described methods for handling platform variation and adaptation of reference

architecture (Section 4).

To evaluate our methods, techniques and tools, we carried out a number of case
studies with mobile phone systems, medical systems and a stock market system. More
details about our achievements can be found in our common task deliverable (to be
published), as well as in referenced publications or the CAFÉ website [5].

6 Conclusions

In this paper we focused on product family engineering and in particular concentrated
on reference architecture construction by exploiting related pre-existing systems and
on handling variability across single products and product families. The main
contribution of our paper is a reference architecture construction process that
integrates architecture recovery, architecture analysis and comparison, and the
reference architecture design process. For each process step we pointed out key
activities and described new, revised and extended techniques used.

Further, we addressed the handling of variability in platforms and the reference
architecture that is a major issue of product family engineering. Particularly, we
described two techniques for classifying platforms with respect to platform coverage
and variation. The outcome of our classification is a guideline that aids engineers in
selecting the proper variation mechanism for the product family platform. In addition
to our classification techniques we presented three approaches to handle variability
across single products and whole product families. These techniques base on the
concept of making the whole or certain areas of the architecture of product families
more explicit. Concerning these areas we took into account features, technology
abstraction layers, and framework extension by commonalities identified across
similar product families.

Future work will be focused on two issues that are concerned with the
improvement of presented techniques and tools, as well as the integration of these
techniques and tools into a workbench. Consequently, we have to devise a common
data format for the data extracted and generated by our tools. We also plan to perform
additional case studies to further evaluate and improve our reference architecture
construction process and platform classification methods.

Acknowledgments

We are grateful to the national ministries of Austria, Germany, Finland, and The
Netherlands for funding our work under EUREKA 2023/ITEA-ip00004 ’from
Concepts to Application in system-Family Engineering (CAFÉ)’. We further thank
our industrial partners Philips, Nokia, and MarketMaker for providing the case
studies. Finally, we would like to thank the anonymous reviewers for their feedback.

References

1. Anastasopoulos, M., Bayer, J., Flege, O., Gacek, C.: A Process for Product Line
Architecture Creation and Evaluation – PuLSE-DSSA Version 2.0. Technical
Report, No. 038.00/E, Fraunhofer IESE. (2000)

2. Bayer, J., Girard, J. F., Schmid, K.: Architecture Recovery of Existing Systems for
Product Families. Technical Report, Fraunhofer IESE. (2002)

3. Bayer, J., Ganesan, D., Girard, J. F., Knodel, J., Kolb, R., Schmid, K.: Definition
of Reference Architecture Based on Existing Architectures. Technical Report.
(2003)

4. Bosch, j.: Design and Use of Software Architectures: Adopting and evolving a
product line approach. Addison Wesley, Mass. and London. (2000)

5. CAFÉ (from Concepts to Application in system-Family Engineering):
(http://www.esi.es/en/Projects/Cafe/cafe.html).

6. Hofmeiser, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-
Wesley, Reading, Mass. and London. (2000)

7. Holt, R. C.: Software Architecture Abstraction and Aggregation as Algebraic
Manipulations. In: Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research (CASCON), Toronto, Canada. (1999)

8. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product
Families: Principles and Practice. Addison-Wesley, Mass. and London. (2000)

9. Knodel, J., Pinzger, M.: Improving Fact Extraction of Framework-Based Software
Systems. In: Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE). (2003) to appear

10. Kruchten, P. B.: The 4+1 View Model of architecture. IEEE Software, Vol. 12
Issue 6. (1995) 42-50

11. Lorentsen L., Tuovinen A-P., Xu J.: Modelling Feature Interaction Patterns in
Nokia Mobile Phones using Coloured Petri Nets and Design/CPN. In: Proceedings
of the 7th Symposium on Programming Languages and Software Tools, Szeged,
Hungary. (2001) 15-16

12. Mehta, N. R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software
connectors. In: Proceedings of the 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland. (2000) 178 - 187

13. Parnas, D.L., Clements, P. C.. A Rational Design Process: How and Why to Fake
It. IEEE Transactions on Software Engineering, Vol. 19, Issue 2. (1993) 251-257

14. Pasman, W.: Platform Coverage and Variation in Product Family Approaches.
Technical Report, Philips.

15. Pinzger, M., Gall, H., Jazayeri, M., Riva, C.: Extracting Architectural Views from
Large Telecommunications Software: A Case Study. Technical Report TUV-
1841-2002-50, Vienna University of Technology. (2002)

16. Pinzger, M., Fischer, M., Gall, H., Jazayeri, M.: Revealer: A Lexical Pattern
Matcher for Architecture Recovery, In: Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE). (2002) 170-178

17. Pinzger, M., Gall, H.: Pattern-Supported Architecture Recovery. In: Proceedings
of the 10th International Workshop on Program Comprehension (IWPC). (2002)
53-61

18. Pronk, B. J.: Component generalization in a multi product family context.
Technical Report CAFÉ consortium-wide. (2002)

19. Riva, C.: Architecture Reconstruction in Practice. In: Proceedings of the 3rd
Working IEEE/IFIP Conference on Software Architecture (WICSA). (2002)

20. Riva, C., Yang, Y.: Generation of Architectural Documentation using XML. In:
Proceedings of the 9th Working Conference on Reverse Engineering (WCRE).
(2002) 161-169

21. Riva, C., Rodriguez, J. V.: Combining Static and Dynamic Views for Architecture
Reconstruction. In: Proceedings of the 6th European Conference on Software
Maintenance and Reengineering (CSMR). (2002) 47-55

22. Wijnstra, J.G.: Components, Interfaces and Information Models within a Platform
Architecture. In: Proceedings of the 3rd International Conference on Generative
and Component-Based Software Engineering, Erfurt, Springer Verlag LNCS
2186. (2001) 25-35

23. Wijnstra, J.G.: Critical Factors for a Successful Platform-based Product Family
Approach. In: Proceedings of the 2nd Software Product Line Conference, San
Diego, Springer Verlag LNCS 2379. (2002) 68-89

24. Wijnstra, J.G.: Classifying Product Family Approaches using Platform Coverage
and Variation. submitted for publication to Software: Practice and Experience

25. Turner C. R., Fuggetta A., Lavazza L., Wolf A. L.: A conceptual basis for feature
engineering. The Journal of Systems and Software, Vol. 49, Elsevier. (1999)

