
Experiences with Software Product Family Evolution

Claudio Riva and Christian Del Rosso
Software Architecture Group

Nokia Research Center
Itämerenkatu 11-13, 00180

Helsinki, Finland
claudio.riva, christian.delrosso@nokia.com

Abstract

The evolution of product family typically oscillates be-
tween growing and consolidating phases. The migration
path starts from a copy/paste approach that offers the fastest
time-to-market and then moves towards a mature software
platform that offers a higher throughput of products. We
have identified several issues that harm the evolution of the
family: new requirements that can break the architectural
integrity of the family, increasing level of bureaucracy in
the organization and a slower process of change. In this
article we present two approaches for coping with the fam-
ily evolution: architecture assessment and architecture re-
construction. We also present Nokia case studies where the
methods have been successfully applied.

1. Introduction

The concept of software product family originates from
the hardware industry where hardware product lines1 enable
the production of numerous variants of products and a sig-
nificative reduction of operational costs by sharing most of
the assets. In the recent years the software has become a
dominant part in an increasing number of embedded prod-
ucts and it is often affecting the quality and the delivery
time of the products. We can estimate that most of the
delays in the release of embedded products is due to soft-
ware rather than hardware faults. To cope with the multi-
tude of software variants required by an industrial product
line, the software assets have been organized in software
product families and, thus, the paradigm of product line has
been transferred to the software embedded in the products.
This paradigm shift has happened for most of industries pro-
ducing embedded products (like cars, consumer electronics

1For the discussion in this article software product line and software
product family can be considered synonymous.

and mobile phones) where they need to deliver a customized
software system for the various products.

A software product family is a collection of products that
share common requirements, features, architectural con-
cepts, and code, typically in the form of software compo-
nents. In this article we investigate the problems that affect
the evolution of a product family and we introduce two tech-
niques that we commonly use for coping with those prob-
lems: architecture assessmentandarchitecture reconstruc-
tion.

2. Product Family Evolution

Software product families are rarely created right away
but they emerge when the domain is mature enough to sus-
tain the long-term investments. The typical pattern is to start
with a small set of products (often just one). If the busi-
ness starts to generate profits or looks profitable in the fu-
ture, new products are introduced in the market. New prod-
ucts are typically copy pasted versions of the existing ones
with some additional new features. Most of the differences
are achieved at the software level, while the hardware plat-
form remains quite unchanged. On the wave of success, the
software embedded in the products becomes a global asset
that becomes in use in several sites worldwide at the same
time. Many sites embed the same software in their local
products and often make their own local modifications (e.g.
customization, updates, patches). As soon as the business
becomes more mature, new investments are needed for con-
solidating the software assets. At this point, the various set
of products are migrated towards a product family in order
to keep all the software variants under control. The migra-
tion process affects the software parts and the organization
as well. The organization needs to adjust its operating pro-
cedures to support the global management of the products
lifecycle (from requirements engineering to testing). The
software variants have to turn into a flexible platform where
the products of the family can be derived from in a more

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



flexible way. We can identify five different patterns or ap-
proaches that appear at different stages of the evolution:

copy/paste: the software variants are created by copying
and modifying the existing products. It is the fastest
approach for creating a new product and it is typically
used when the organization is entering or creating a
new business. All the resources are focused in the
implementation of new features without a strict con-
trol redundancy that the variants create. This approach
minimizes the risks of development but it maximize
the entropy. This approach gives the highest flexibility
for creating new products and entering in a new mar-
ket. Verhoef et al. describes this process assoftware
mitosis[8].

configuration: The variability is embedded in the software
with a set of configuration parameters. The parameters
allow to enable/disable parts of the code, to select par-
ticular algorithms and to configure the modules. Al-
though the method is simple and allows to create nu-
merous variants from a small set of bases, it has several
drawbacks concerning the maintainability and evolv-
ability of the code.

component-based:the variable functionality of the soft-
ware is factored into separate software components
and assigned to different development teams with a
clear separation of concerns. The variants are achieved
by plugging different components into a common soft-
ware framework. The granularity of the components
can range from single classes to entire subsystems.
The correct granularity is often a trade-off between
the flexibility/maintainability: few large components
reuse more software but are harder to compose and
maintain, small components might embed too little
functionality. The correct size is often reached after
some time. The component-based approach has an im-
pact on most of the software engineering activities of
the organization, especially for the integration phase of
the components in the products. The component-based
approach can be considered a key milestone towards a
flexible product family.

platform: the concept of software platform emerges when
the organization starts to consolidate its experience in
a mature domain. The goal is to maximize the reuse of
the software components among the products and the
throughput of the family. The platform provides a co-
hesive set of services, libraries, software components
and product frameworks that are used for building the
products. The basic services (e.g. telecom protocols,
hardware drivers, graphical libraries, common appli-
cations) become globally available in a precise and

controlled way. But that’s not all. The platform be-
comes a well-defined entity in the organization with
its release plan, roadmap for the new features, coding
conventions, idioms, testing procedures, architectural
documents, training material. The development teams
are organized in a matrix structure. On one dimen-
sion there are thecomponent factoriesand theplatform
managementteam responsible for the development of
the software components and for the maintenance of
the platform. On the other dimension there is theprod-
uct developmentorganization responsible for the de-
velopment of the products. The crucial phase of the
product development is the integration where the dif-
ferent components have to be integrated in the coherent
way.

optimized platform: the optimized platform tries to over-
come with the integration problems of the platform ap-
proach. Most of the resources are spent during the in-
tegration of the platform components when architec-
tural mismatches or bugs have to be carefully analyzed
and solved by the component owners. The optimized
platform solves this problem by enabling the feature-
based derivation of the products. The platform offers a
rich set of configurable features. The product integra-
tor selects and configures the features to be included
in the product and the real integration is automatically
achieved by the platform. This has been envisioned in
our previous work [1].

In real product families the five approaches can coexist
at different extent. In a highly dynamic domain, the prod-
uct family is more directed in the direction of copy/paste
approach that offers the fastest time-to-marker. In a stable
domain, the platform approach is a better choice because
it maximizes the consolidation of the assets. Verhoef et al.
describes the same concept using thegrow and prune model
[8]. The product family is typically oscillating between
grow and prune phases. In the grow phase, the product fam-
ily is free of exploiting new opportunities without much ar-
chitectural governance using the copy/paste approach (this
leads to the software mitosis phenomena causing a large in-
crease of clones and variants). In the prune phase, the weak
branches of the family are removed and the successful prod-
ucts are re-organized in order to be consolidated in the fam-
ily (re-balancing the robustness and the governance that was
lost during the mitosis phase).

3. Product Family Architecture

We present a typical example of a Nokia’s product fam-
ily architecture. The main goal of the product family ar-
chitecture is to describe the commonality and variability of
the family in order to make explicit the variation points of

2

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



the products. We use a conceptual hierarchial framework
for describing the elements of the product family architec-
ture. We can identify at least four layers of genericity: the
reference family architecturelayer, thefamily architecture
layer, thelead product architecturelayer and thecopy prod-
uct layer.

The reference family architecture describes the global
architectural style that is valid for all the products of the
family: architectural significant requirements, architectural
rules, patterns, component types, communication infras-
tructure, runtime issues. The architects can derive the soft-
ware architecture for the product families from the reference
family architecture.

The mobile phones are grouped into product families ac-
cording to the UI styles, features, telecom standards and
hardware generations. This represents a first level of varia-
tions where the products are grouped in macro-families (e.g.
GSM, TDMA or UMTS). For each product family, the fam-
ily architecture describes the services and features that are
available in the platform. They may include the protocol
stacks, the OS, the UI kernel, basic applications and hard-
ware drivers.

Each family contains a reference product implementa-
tion that we indicate as lead product architecture. This prod-
uct is considered to be the most typical one of the family.
It is derived from the family by copying the common ele-
ments from the family architecture and by instantiating the
abstract elements. The purpose of the lead product architec-
ture is to provide a reference architecture for the other prod-
ucts and to clearly document the variations points available
within the family.

At the bottom of the hierarchy, there is the copy product.
This is typically copied from the lead product and adapted
to the specific product requirements. This represent the fi-
nal product architecture and it is the starting point for the
development project (mainly focused on feature configura-
tion, integration and testing).

4. Product family issues

In the Section 2 we have presented five different ap-
proached for organizing a product family and in the Section
3 we have presented a typical product family architecture.
In this section, we discuss several problems that typically
concern the evolution of a product family.

4.1 Increasing Bureaucracy

The migration towards a product family is a process that
introduces bureaucracy in the organization. The software
process becomes more complex due to the introduction of
new procedures that have to be followed when creating a
new product or modifying the platform. Differently from

the uncontrolled growing phase, changes have to be well
documented and motivated. It also emerges a new hierarchy
of managers, architects, feature owners, component design-
ers that are responsible for preserving the integrity of the
product family architecture and for approving the changes.
Enforcing the architectural governance requires a certain
level of bureaucracy but this is also a threat for the flexi-
bility of the family. This tendency towards stiffness is often
opposed by practices that increase the flow of communi-
cation among different teams, for example by introducing
architects that are responsible for heterogenous technology
areas.

4.2 Slow process of change

There are cases when the change requests for new fea-
tures have to go through a long approval process. If we
consider the four-layer architecture of the Section 3, a typ-
ical scenario is the following. A new feature is detect by
the product development team at the lowest level. If it is
a local feature and it does not have an impact on the fam-
ily, it is just implemented in the local product. If it has a
possible impact on the family, the feature has to be passed
over and over to higher levels where its impact is carefully
assessed. In the worst case a change request may reach the
reference architecture level. This happens when the new
feature requires a critical change at the core of the family
(for instance, adding a streaming video functionality might
require changed in the operating system). At some point the
change request may be reject or delayed to avoid the nega-
tive impact that its implementation would have on the archi-
tecture. A slow process of change is an inevitable drawback
for avoiding features that could break the architectural in-
tegrity of the family.

4.3 Over-designed platform

The design of a new software platform is a long-term ac-
tivity where considerable resources are spent for designing
a generic-enough platform to support the long-term evolu-
tion of the product family. There is often the risk of design-
ing a platform that is too generic for what is really needed
by the products. There is a sort of auto-inducted tendency
of searching for the best software design that can handle
all the possible situations. This often leads to the creation
of far too complex software frameworks that are very dif-
ficult to instantiate. This tendency should be limited and
the design activity should investigate the good-enough ar-
chitectures rather than the best solutions.

4.4 Spaghetti dependency

A main goal of a product family is to share software
among several products. Since the owners of the software

3

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



components (i.e. the component factories) and the users of
these components (i.e. the product development teams) are
different, for each product there is an inevitable network
of dependencies. Common problems are: the interfaces of
the components change without notice, long queues for the
change request of widely used components, the clients of
the components are unknown (the dependencies are often
only visible in the code). Moreover, software dependencies
can be easily mapped to human interactions among different
development teams and in a multi-site geographically dis-
tributed environment managing these interactions is a chal-
lenge. Minimizing and controlling the software dependen-
cies of the family is a key activity for the organization.

4.5 Feature reallocation

In the typical scenario the features of the product family
architecture are instantiated in the specific product architec-
ture. However, during the consolidation phase the features
in the products can be re-allocated to the platform. In this
case, it is necessary to move the implementation of the fea-
ture out of the product and integrated it with the platform.
This often happens when a feature that has been exploited
in one product has been successful and, thus, other products
want to use it. In this process, we need to ensure that the
feature can be supported in the entire family.

4.6 Cross-family reuse

There are cases when it is necessary to share software
components among different product families for reducing
development costs (for example, when migrating one prod-
uct family to the latest hardware that is already in used by
another family). The first problem is that there can be archi-
tectural mismatches among the families (e.g. different op-
erating systems) and these differences have to be assessed.
The second problem concern the ownership of the common
software. In many cases, it is possible that the product fam-
ily has little influence on the software development some-
where else. This situation often leads to a long integration.

4.7 Introduction of new requirements

In a dynamic market it is critical to handle the forth-
coming requirement in time. Even though the problem of
incorporating new requirements is not specific to product
family architecture, the process has to accomplish an even
more difficult task. The variability of the products must be
considered when evolving the architecture and it must be
carefully verified if a requirement for a product can lead to
break the product family architecture. In the analysis of the
forthcoming requirements must be ascertained how easy is
to add them to the current architecture and estimates the
work needed for the implementation.

5. Software Architecture Assessments for
Product Families

Architectural assessment is an essential part of the sys-
tem architecting process that is targeted to evaluate the de-
gree of fulfillment of quality, or non-functional, require-
ments. Recent research has focused on the application of
architectural assessment to software systems [7], [11], [2]
as well as to software product families [9], [12].

Currently, the literature about the issue of evolution is
scarce (with exceptions such as [4]), and there is no es-
tablished best practice that guides into this particular dis-
cipline.

Several architectural assessment practices and meth-
ods exist. Examples are ATAM [13], SAAM [10] and
experience-based assessments [3]. None of the existing
methods is specifically tuned for product family architec-
ture. Also, case study reports from industrial settings are
few.

Product families include products that share common re-
quirements, features architectural artifacts, and components
or simply code. The business reasons behind architecture
assessment can range among the following:

• Evaluate and improve the architecture of certain soft-
ware system, with special focus on qualitative at-
tributes.

• Evaluate the conformance of a software system to stan-
dards.

• Check whether certain qualitative requirements are sat-
isfied by the product family architecture.

• Identify the skills needed for implementing the system.

• Validate the partitioning for implementing the system
within a certain organization.

• Identify the risks related to a particular architecture.

Many of these are believed to be important side bene-
fits of assessments, which cannot be properly classified as
goals. However, these beliefs have not been experimentally
proved. The input of the architecture assessment is (ob-
viously) the available documentation and knowledge about
the architecture. Its primary outcome is the assessment re-
port. Optimally, the defects and shortcomings identified
during the assessments and captured in the report lead to
an improvement of the architecture and of its documenta-
tion. In the specific case of product families, architecture
assessment is usually done for different business reasons.
Software product families are designed to support several
products bearing different features. To ensure fast product
derivation, the software that is common to a certain prod-
uct family is ported in new products. This emphasizes the

4

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



role of assessments, as in the case study that we describe
below. We describe a case study that we performed in order
to evaluate the capability of a large software product family
to evolve and support certain new (major) requirements.

5.1 Case study

The scope of the assessment included a fairly large sub-
set of Nokia’s mobile terminal product family software.
Currently available mobile terminals have reached a con-
siderable level of sophistication. However, with the evolu-
tion of the mobile networks that is foreseen to take place
in the next few years, a number of major new requirements
will have to be incorporated. Such requirements include,
but are not limited to, the addition of several new applica-
tions (especially in the multimedia domain) and the support
for new hardware and communication protocols. Moreover,
the speed of launch of new features is (and is expected to
continue) increasing, and the product life cycle symmetri-
cally decreasing in duration. This poses an emphasis on
flexibility and modifiability of the software product fam-
ily architecture. The main objective of the assessment was
to estimate the capability of the existing architecture to in-
corporate such new requirements, and to highlight possi-
ble problems in this process. Our first step was to define
the scope of the architectural assessment that was to take
place. The software system we assessed is very large, and
it is being developed in different sites by teams that do not
regularly communicate. Architects and developers work in
a distributed fashion on product development. We identi-
fied the number of stakeholders for the architecture to be in
the order of several dozen. The method we had applied in
our previous assessments [12] consisted of a scenario-based
walkthrough that took place during a brainstorming session
(meeting). This method has proved to be effective when the
stakeholder team (that performs the walkthrough) is of rea-
sonable size, so that communication during the meeting can
happen smoothly. However, we had to face many stakehold-
ers who had seldom met before the assessment, and were
located in separate, often very far sites. Additionally, most
stakeholders were believed to be expert of a relatively small
domain area (e.g. system performance, usability, impact of
new requirements, low-level software). For these reasons,
we chose to perform personal interviews with every stake-
holder lasting about two hours and focusing on the issues
to which each of them could contribute (as estimated to the
best of our and the chief architect’s knowledge). The in-
terviews were semi-structured, and during the course of the
dialogue the interviewer guided the interviewees based also
on information gathered previously. The interviews were
intended to be as open as possible, since we needed to elicit
opinions about highly technical issues that depend on both
the architecture and implementation of certain feature sets

in the product family. As a first step, we had to define the or-
der in which the stakeholders would have been interviewed.
Therefore, we divided the stakeholders in three broad cate-
gories, to interview in this order:

1. Those responsible for collecting forthcoming require-
ments and evaluating their potential impact on the ar-
chitecture.

2. Experts on a specific part of the software product fam-
ily or on a key quality attribute.

3. Those responsible for the development and mainte-
nance of the software product family architecture at a
high level.

We strove (as much as logistics allowed) to interview people
from these three categories in a sequential order (i.e. people
from category a before people from category b, and people
from category b before people from category c). We associ-
ated the completion of each category with a milestone of the
assessment project. The first phase included the elicitation
of key new scenarios. From the interviews, we elicited the
current and future requirements about the architecture. The
result of this phase is a list of scenarios for evolution. These
usually consist of one or more questions such as ”how is the
architecture going to evolve to support requirement X?” The
understanding of the requirements allowed us to establish
and plan the list of the stakeholders to be interviewed during
the following phase. The final result of the assessment was
a prioritized list of the technical and organizational issues
that emerged across the whole assessment. The document
containing the requirements and their estimated impact also
was handed as a deliverable.

5.2 Results

Our case study was essentially an experience-based as-
sessment. The result consists of a document that lists of po-
tential problems in the current product family architecture.
Among other things, the document contained a set of views
(in the IEEE 1471 sense) of the current architecture. Since
the assessment focused on evolution, we had to dedicate a
fairly large fraction of the total effort to eliciting new key
scenarios and periodically checking the assumptions and fu-
ture requirements. We did this all the way through the as-
sessment, based on both the existing documentation about
the architecture and on the material extracted from the in-
terviews that we had already performed. We structured the
report according to the problem domain. Under each sub-
domain, we described the status of the architecture of the
corresponding implementation, all the issues that the inter-
viewees reported, as well as the (ongoing and advocated)
improvement activities in the different development units.

5

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



We tried to perform an analysis of the issues that were pre-
sented, rather than simply reporting what we heard from the
stakeholders. The report concludes with a series of hints on
potential risks and weaknesses. In addition, we extracted
a table (tightly integrated with the report) containing about
65 potential action points. Every action point consisted of
the following elements: business problem, problem, solu-
tion, components affected and ”real action”. The business
problem highlighted the main business reason that justifies
spending resources on solving the problem, (e.g. better user
experience). Every problem could have several solutions,
which we categorized by means of the potential impact on
the architecture (including but not limited to the number of
components affected). The ”real action” was aimed to man-
agement in order to address the problem, or further study
unclear issues. This ensured that adequate follow-up activi-
ties would be started and associated to a responsible person
and a deadline. The activities springing from such action
points would become the practical impact of the assessment
on the organization.

5.3 Lessons learned

In this section we will present a number of interesting
lessons that we have learned during this case study. We will
put them in form of advice, trusting to provide valuable ma-
terial for other applications of similar methodologies. The
fact that our case study was fairly well focused helped us in
understanding the domain relatively quickly, and in build-
ing on the information that we had gathered during previous
interviews to gradually refine the material. The structure
of the interview forced stakeholders to concentrate on very
specific issues, and instances where different stakeholders
repeatedly quoted a certain issue as a problem increased the
validity of their claims. In order to guarantee focus, the
scope of the assessment must be clearly described and ex-
plained before each interview. We gave every stakeholder
the opportunity to comment on and refine it if they wished.
Before the interviews, we also gave a brief overview of the
assessment methodology, and specified what we expected
the outcome to be, thus giving the stakeholders a somewhat
clear idea of the entire process and of the practical impact
and value of their contribution. The main purpose of the as-
sessment task was to identify and highlight possible weak-
nesses of the product family architecture. However, almost
all stakeholders rated its role as a communication vehicle
as very important. This is consistent with previous research
work on the subject, but was particularly evident in our case
study, where the size of the architecture under assessment
and the geographical and organizational distribution of the
development and maintenance departments naturally ham-
pered communication. In more than one instance we came
into a stakeholder who quoted a problem that had already

been fixed elsewhere, evidently without proper communica-
tion. The assessment partially helped overcome this prob-
lem. Moreover, the report we produced still serves as a sort
of ”white paper” on the status of the product family archi-
tecture and the main problems it suffers from. In several
instances we have noticed different opinions between ar-
chitects on where certain problems originated and on the
methods that could be used to solve them. In a few cases
we were proposed improvement activities without a clear
statement of what problems they were meant to solve. All
the claims must necessarily be based on the technical evi-
dence supported by facts and, possibly, measurements. If
no proof supports certain claims, then follow-up activities
must be undertaken in order to define the problems in a
more objective way. For instance, it is not enough to hear
that some product has low usability: you have to perform
simulations with real users to evaluate this specific quality
attribute. During the course of our interviews, we noticed
that some stakeholders tended to minimize the relevance of
the problems, thus assuming an ”everything can be solved”
attitude. Others, however, were more pessimistic, implying
that ”the whole company will suffer from this if we don’t
do something soon”. As always, the truth lies somewhere
in the middle. The assessment coordinators must try to keep
balance and report facts as they are, with as little emotional
bias as possible. For this reason, it is important that the
assessment team be part of an external organization. When
the assessment coordinators are part of the organization that
is responsible for developing the architecture, their opin-
ion is naturally subject to more biasing and influence. The
reasons can be various, from trusting your close colleagues
words more than others to having a vested interest in pro-
moting a positive evaluation of the architecture. All these
situations must be avoid during assessments. For the rea-
sons we list above, we recommend (and will keep on) pro-
moting architectural assessments as a periodical task during
the architecture development life cycle. Our as well as other
researchers’ previous case studies provide strong evidence
that the benefits of assessments far surpass their cost. We
advocate the continuation of research in the field, as well as
the publication of more industrial experience reports. These
should also aim for a quantitative and qualitative compari-
son of interview-based versus brainstorming-based scenario
walkthrough methods.

6. Architecture Reconstruction and Confor-
mance Checking

The evolution of a family is mainly driven by two forces:
the consolidation of the assets in the platform and the cre-
ation of new products. The platform slowly evolves by in-
corporating the new architectural requirements, while new
products are added by introducing new features. This ap-

6

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



proach is supported by a combination of forward and re-
verse engineering. Forward engineering activities are nec-
essary to develop the new features during the grow phase.
Reverse engineering [5] activities are mainly concerned
with the consolidation of the assets:

• recovering the updated product architecture (as op-
posed to the intended architecture that was in the minds
of the architects)

• monitoring the organization of the components in the
platform

• coping with the architectural dependencies within the
platform and among products.

• enforcing the conformance to the architectural rules

The main goal of our architecture reconstruction method is
to recover architectural models that the architects can use
to comprehend the actual implementation of the products.
The focus of our reconstruction is mainly on the architec-
tural significant aspects of the products (e.g. the logical de-
pendencies among the software components).

Architecture reconstruction [14] deals with the task of
recovering the past design decisions that have resulted in
the present implementation of the system. The design de-
cisions are about the concepts that represent the building
blocks of the system and the structure that describes how the
different software entities are connected. Similar to arche-
ology, which aims at studying man’s past through scientific
analysis of the material remains of his cultures, architec-
ture reconstruction is a reverse engineering activity that in-
fers the architectural rationale from the available artifacts
(e.g. code, design documents, interviews with the system
experts).

The outcome of the reconstruction is typically presented
using multiple views [6] that show different aspects of the
architecture:

Component view: describing the major components, their
interfaces and their logical relationships

Task/Process view:describing the task allocation of the
architectural entities and showing the inter task com-
munications

Development view: describing the organization of the
source code files and their relationships (for example,
include dependencies)

Deployment view: describing the physical location of
components in the processing units.

Feature view: describing the run-time implementation of
a feature at a high level of abstraction.

Organizational view: describing the organization of the
development activities (projects, programs, sites).

A more detailed description of the reconstruction method
can be found in [14]. In this section we discuss the product
family aspects of the reconstruction and present two case
studies.

The reconstructions activity starts with the identification
of the architectural concepts of the product family. Every
software system is built according to a particular architec-
tural style. The style defines the types of building blocks
that can be used to compose the system (e.g. components,
classes, applications) and the communication infrastructure
that enables the components to interact at runtime (e.g. soft-
ware busses, remote procedure calls, function calls). Those
concepts represent the way developers think of a system,
and they must become the first class entities, the terminol-
ogy of the reconstruction. The reference architecture de-
scribes the global architectural style for the family and it
is typically the source of information for this phase. In
the case the reference architecture is not available, it has
to be recovered from the existing products. This phase is
conducted with the experts of the system through a series
of scenario-based evaluations of the system. During this
phase, the architecturally significant requirements (ASR) of
the family are detected. It is important to re-document them
because every architecture has been designed to support
some specific requirements. Understanding the ASRs allow
to understand the motivations of certain design choices.

The second phase concerns with exploration of the soft-
ware and starts by extracting a raw model of the system.
A raw model is a collection of basic facts known about the
system at a low level of abstraction. The facts can be ex-
tracted with a variety of methods: lexical or parser-based
tools for analyzing the source code, profiling tools for the
dynamic information (e.g. message passing, process spawn-
ing, inter-process communication), manual analysis of de-
sign documents, and interviews with the developers. Not all
the facts are directly available and some must be inferred.

The raw model is typically a large and unstructured
data set (containing tens of thousands of entities and rela-
tions). We can enrich the model by classifying and struc-
turing the model elements in hierarchies and by removing
architecturally irrelevant information. The classification is
conducted by interviewing the architects. For each logi-
cal component, we have identify its counterpart in the re-
constructed model and we add the mapping to the model.
In the final model, the logical dependencies among the soft-
ware components should become visible. The model is typ-
ically presented using the multiple views previously dis-
cussed and using different presentation formats (UML di-
agrams, hyperlinked documents, graphs).

The final step is to check the conformance of product ar-
chitectures against the architectural rules. The reference ar-

7

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



chitecture and the family architecture contain several rules
that have to be valid for all the products of the family. Once
we have extracted the updated architectural model we can
check for this conformance. This check can be automated
and executed periodically to identify the products that are
violating the rules.

6.1 Case study 1

We have tailored the reconstruction method for the anal-
ysis of a Nokia product family. In the product family, the
features are typically developed independently and concur-
rently by different component factories. The component
factories regularly release software components that are in-
tegrated in the products. In the integration phase, a set of
features are combined together and presented in the user in-
terface (UI) in a simple and coherent way. Some key chal-
lenges concern how to control the dependencies among the
component factories, how to ensure the compatibility of the
interfaces, and how to ensure that the architectural rules dic-
tated by the reference architecture are enforced in the prod-
ucts. The reconstruction method helps the architects to ex-
tract the actual architectural configuration of the products
and to examine the component dependencies at different
levels of detail. The dependencies are represented with mes-
sages passed among the components and by C-like function
calls within the components. With the component view the
architects can look at the logical dependencies among the
components and they can detect the clients and suppliers for
each component. With the development view the architects
can examine the source code organization and the include
dependencies. With the task view, the architects can exam-
ine how the components are grouped in different OS tasks,
and they can analyze the inter-task communication due to
the exchange of messages. With the management view, it is
possible to look at the organization of the component fac-
tories and their dependencies (caused by component usage
among different factories). With the geographical view, it is
possible to look at the geographical distribution of the com-
ponents in the development sites. With the feature view,
the architects can create Message Sequence Charts (MSC)
showing the implementation of a set of features at the com-
ponent level. The charts are based on the traces dynamically
generated by the execution of the features on the target sys-
tem. The reconstruction method supports the architectural
concepts that are clearly specified in the reference architec-
ture. In this way, the architects can automatically create the
views from the implementation of the products, and they
can look at and manage the assets from a high-level per-
spective. They can also validate their mental models with
the concrete architecture.

6.2 Case study 2

We applied the reconstruction method for recovering the
architecture of one Nokia mobile phone that now serves as
a platform for other products. The first goal was to recover
the current object oriented design of the system. With the
tools we have extracted a model that contains the conven-
tional C++ constructs (such as classes, methods, variables)
and their dependencies (such as inheritances, method calls
and variable accesses). We have organized the entities in
logical groups according to the available design documents
and according to the suggestions from the architects. The
extracted model allows the architects to analyze the depen-
dencies among the high-level logical subsystems and to ex-
amine the internal structure. The second goal was to de-
tect the dependencies between the implementation and the
external packages. We customized the extraction tools in
order to detect the specific dependencies (such as asyn-
chronous messages) that were requested by the architects.
The final model allows the architects to navigate a complete
architectural model starting from a high-level view of the
system. The models also provided fresh architectural infor-
mation for creating the platform of a new product family.

7. Conclusions

We have identified five approaches for creating a product
family and the problems related to their evolution. In real
product families the five approaches co-exist at the same
time. We have proposed two methods for coping with the
evolution of the family: architecture assessment and archi-
tecture reconstruction. The architecture assessment is typ-
ically applied during the grow phase of the product fam-
ily in order to evaluate the new requirements and their im-
pact on the product family architecture. The architecture
reconstruction is typically applied during the consolidation
phase in order to understand the actual implementation of
the products, to integrate product features in the platform
and to maintain the architectural integrity of the platform.
Our case studies show that the two proposed methods have
been beneficial for containing the risks implied by the evo-
lution of the Nokia product families.

References

[1] M. A. and R. C. Architectural evolution of legacy product
families. Fourth International Workshop on Product Family
Engineering PFE-4, pages 47–55, October 2001.

[2] G. Booch. Conducting a software archi-
tecture assessment. Rational white paper,
http://rational.com/products/whitepapers/391.jsp.

[3] J. Bosch.Design and Use of Software Architectures. Addi-
son Wesley, 2000.

8

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland



[4] J. Bosch and P. Bengtsson. Component evolution in product
line architectures.Proceedings of the International Work-
shop on Component-Based Software Engineering, 1999.

[5] E. J. Chikofsky and J. H. C. II. Reverse engineering and
design recovery: A taxonomy.IEEE Software, pages 13–
17, Jan. 1990. Definitions of a number of key notions in
the field of reverse engineering are proposed. Forward and
reverse engineering, redocumentation, design recovery, re-
structuring, and reengineering are described.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting software
architectures: Views and beyond. 2003.

[7] A. G. et al. Recommended best industrial practice for soft-
ware architecture evaluation.Technical Report CMU/SEI-
96-TR-025, Software Engineering Institute, Pittsburgh.

[8] D. Faust and C. Verhoef. Software product line migration
and deployment.Software Practice and Experience, to ap-
pear, 2003.

[9] M. Jazayeri, F. van der Linden, and A. Ran.Software Archi-
tecture for Product Families. Addison Wesley, 2000.

[10] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-
based analysis of software architecture.IEEE Software,
pages 47–55, November 1996.

[11] B. L., C. P., and K. R.Software Architecture in Practice.
Addison Wesley, 1998.

[12] A. Maccari. Experiences in assessing product family soft-
ware architecture for evolution.International conference on
Software Engineering (ICSE), May 2002.

[13] K. R., K. M., and P. Clements. Atam: A method for architec-
ture evaluation.Technical Report CMU/SEI-2000-TR-004,
Software Engineering Institute, Pittsburgh, 2000.

[14] C. Riva. Architecture reconstruction in practice.Proceed-
ings of the IFIP Working Conference on Software Architec-
ture, 2002.

9

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland


