
Symphony: View-Driven Software Architecture Reconstruction

Arie van Deursen
CWI & Delft Univ. of Technology

The Netherlands
Arie.van.Deursen@cwi.nl

Christine Hofmeister
Lehigh University

USA
hofmeister@cse.lehigh.edu

Rainer Koschke
University of Stuttgart

Germany
koschke@informatik.uni-stuttgart.de

Leon Moonen
Delft Univ. of Technology & CWI

The Netherlands
Leon.Moonen@computer.org

Claudio Riva
Nokia Research Center

Helsinki, Finland
claudio.riva@nokia.com

Abstract

Authentic descriptions of a software architecture are re-
quired as a reliable foundation for any but trivial changes
to a system. Far too often, architecture descriptions of exist-
ing systems are out of sync with the implementation. If they
are, they must be reconstructed.

There are many existing techniques for reconstructing in-
dividual architecture views, but no information about how to
select views for reconstruction, or about process aspects of
architecture reconstruction in general. In this paper we de-
scribe view-driven process for reconstructing software archi-
tecture that fills this gap. To describe Symphony, we present
and compare different case studies, thus serving a secondary
goal of sharing real-life reconstruction experience.

The Symphony process incorporates the state of the prac-
tice, where reconstruction is problem-driven and uses a rich
set of architecture views. Symphony provides a common
framework for reporting reconstruction experiences and for
comparing reconstruction approaches. Finally, it is a vehicle
for exposing and demarcating research problems in software
architecture reconstruction.

1. Introduction

Many software engineering tasks are hard to conduct without
relevant architectural information. Examples include migra-
tions, auditing, application integration, or impact analysis.

To illustrate the latter, consider the “Basel II” agreement
of the Basel Committee on Banking Supervision which regu-
lates financial risk estimation and reporting.1 Analysts from
Forrester research have estimated that migrating to “Basel II”
will cost banks such as ING or Deutsche Bank approximately
115 million Euros. 60% of these costs concern changes to the
bank’s information systems. Such high impact changes can-
not be made without a clear picture of the architecture of the
underlying information systems.

1 See www.bis.org/bcbs/ and www.forrester.com

In an ideal world, the relevant architectural information
is documented at the time architectural decisions are made,
updated whenever these decisions are revised, and readily
available when needed for a particular task. Unfortunately,
architectural information, when available at all, is often out-
dated and incorrect, or inappropriate for the task at hand.

Software architecture reconstruction is the process of ob-
taining a documented architecture for an existing system. Al-
though such a reconstruction can make use of any possible
resource (such as available documentation, stakeholder in-
terviews, domain knowledge), the most reliable source of in-
formation is the system itself, either via its source code or
via traces obtained from executing the system.

Architecture reconstruction in practice has been pre-
dictably ad-hoc, using simple tools and a large amount of
manual interpretation. Researchers have been trying to im-
prove the state of the practice primarily by providing better
techniques and tools (e.g., cluster or concept analysis, pro-
gram analysis, and software visualization). The application
of these techniques usually involves three steps: extract raw
data from the source, apply the appropriate abstraction tech-
nique, and present or visualize the information obtained.

Although research papers presenting reconstruction tech-
niques typically describe the steps needed for the successful
application of one specific technique, a number of questions
remain. What problems require architecture reconstruction?
What are typical views that should be recovered? Which
techniques are suitable for reconstructing particular views?
How can different views be presented so that they actually
hepl to deal with the problem at hand? In this paper we pro-
pose Symphony, a method that aims at helping reconstruc-
tion teams in answering such questions.

Symphony2 is the result of a systematic analysis of (1) our
own experiences in software architecture reconstruction, (2)

2 The name Symphony reflects that a successful reconstruction is the
result of the interplay of many different instruments. Moreover, the authors’
collaboration in the area of software architecture reconstruction started in
the music room of Castle Dagstuhl in Germany.

cases conducted by close colleagues, and (3) the various ap-
proaches that have been published in the literature. In partic-
ular, the paper integrates four different reconstruction cases
carried out by the authors. These cases are used throughout
the paper to illustrate each step of Symphony. They are de-
scribed in more detail in the appendix that is contained in the
full technical report [5].

Moreover, the case studies demonstrate the importance of
viewpoints in focusing the reconstruction activities to solve
a particular problem. Different viewpoints and correspond-
ing techniques were used in all case studies, underlining the
need to recognize viewpoints as first-order elements of any
architecure reconstruction process.

Having a method like Symphony can help practitioners by
giving them guidance in performing an architecture recon-
struction. In addition, Symphony provides a good concep-
tual framework for comparing case studies. It can help re-
searchers by providing a unified approach to reconstruction,
with consistent terminology and a basis for improving, refin-
ing, quantifying, and comparing reconstruction processes.

Furthermore, the Symphony method is view-based in
recognition of the importance of multiple architectural views
not only in presenting architecture but more fundamentally in
defining the reconstruction activities. Previous research has
focused on recovering a single architectural view or a few
preselected views. Part of the Symphony process is the dis-
covery of the views that should be reconstructed in order to
solve the problem at hand.

This paper is organized as follows. First we summarize
related work in Section 2. Then, we define our terminol-
ogy on architectural views in Section 3. In Section 4 we
provide an overview of the Symphony steps, which are then
described in Sections 5 and 6. In Section 7 we summarize
our contributions and opportunities for future work.

2. Related Work

Software architecture reconstruction is an active area of re-
search, as illustrated by the recent software architecture re-
construction workshops held in conjunction with the Work-
ing Conference on Reverse Engineering in 2001, 2002, and
in 2003 in Dagstuhl, as well as the workshops organized by
the SEI on asset mining for software product lines.

Although there is a substantial body of published work in
the area of reverse architecting, we are not aware of other pa-
pers addressing the software architecture reconstruction pro-
cess per se. In this section, we summarize those papers that
deal with software architecture reconstruction and discuss
the process elements covered by them. Note that a signifi-
cant amount of related work is furthermore discussed in our
presentation of the various Symphony steps.

Software architecture reconstruction is a special form of
software reverse engineering. Many reverse engineering ap-

proaches are based on an extract–abstract–present cycle, in
which sources are analyzed in order to populate a reposi-
tory, which is queried in order to yield abstract system repre-
sentations, which are then presented in a suitable interactive
form to the software engineer. Tilley et al. [32] describe
the extract–abstract–present approach in more detail, refer-
ring to the steps as data gathering, knowledge inference, and
information presentation.

A number of reverse engineering activities focus on soft-
ware architecture reconstruction. Kazman et al. [12] pro-
pose an iterative reconstruction process where the histori-
cal design decisions are discovered by empirically formulat-
ing/validating architectural hypotheses. They also point out
the importance of modeling not only system information but
also a description of the underlying semantics [12]. Their
approach is currently extended to include the reorganization
of recovered assets into software product lines [31].

Finnigan et al. [11] propose the Software Bookshelf: a
toolkit to generate architecture diagrams from source text.

Ding and Medvidovic describe the Focus approach, which
contrasts a logical (idealized, high-level) architecture with a
physical (as implemented, as recovered) one [9]. By apply-
ing refinement to the logical and abstraction to the physical
architecture, the two are brought together incrementally.

All the previous works differs from Symphony in that they
address a determined goal, concrete techniques, and a certain
fixed sets of views to be reconstructed, whereas Symphony
provides a general reconstruction model.

3. Views in Symphony

Software architectures are generally described by models
and their rationales. The goal of Symphony is to reconstruct
such models (and their rationales if possible). These models
are created using viewpoints and presented using views.

3.1. Views and Viewpoints

A view is a representation of a whole system from the per-
spective of a related set of concerns [16]. While it is now
generally accepted that the architecture description should
be composed of multiple views, the terminology related to
views is not yet widely accepted. In this paper, we refer to
the IEEE 1471 standard [16].

In IEEE 1471, a view conforms to a viewpoint. While a
view describes a particular system, a viewpoint describes the
rules and conventions used to create, depict, and analyze a
view based on this viewpoint [16]. A viewpoint specifies the
kind of information that can be put in a view.

The use of architectural viewpoints and views is a key as-
pect of Symphony. In forward design, different architectural
viewpoints are useful for separating engineering concerns,
which reduces the complexity of design activities. When the
resulting design is captured in separate views, this separation

Target Source

layer uses layer
layer contains program
layer contains copybook

program uses program
program copies copybook
file conforms-to naming-convention
layer prescribes naming-convention

table joined-with table
program C/R/U/D table
program enforces

integrity-constraint
layer C/R/U/D table

program uses-DB-utility parameter-list
table has-primary-key column-list
table has-index column-list
column-list compared-with column-list

Figure 1. Some viewpoints for Assessment case.

of concerns helps stakeholders and architects understand the
architecture.

For architecture reconstruction, multiple viewpoints and
views are also beneficial. Different viewpoints help the ar-
chitect determine what information should be reconstructed
in order to solve the problem. The existence of a library of
viewpoints found to be generally useful gives the architect a
basis for reasoning about how different kinds of architectural
information shed light on the problem. Separation of con-
cerns still plays a role, but now in allowing the architect to
reason separately about how each viewpoint could contribute
to a solution of the problem.

3.2. Source, Target, and Hypothesis

A source view is a view of a system that can be extracted
from artifacts of that system, such as source code, build files,
configuration information, documentation, or traces.

Some source views discussed in this paper are at such a
detailed level that they are not generally considered to be
architectural views. For instance, the source view may cover
abstract syntax trees and control flow graphs.

A target view is a view of a software system that describes
the as-implemented architecture and contains the informa-
tion needed to solve the problem/perform the tasks for which
the reconstruction process was carried out.

A hypothetical view describes the architecture of the sys-
tem, but perhaps not accurately. It can be a reference or
a designed architecture used to check conformance of the
implemented architecture to a norm. It can be a postulated
architecture, describing the current understanding of the ar-
chitecture of a system, and used to guide the reconstruction.
This view is typically created by interviewing the system ex-
perts or by examining the existing documentation.

To illustrate the roles of source, target, and hypothetical
views we take a look at a reconstruction conducted as part of
a quality assessment of a system written mostly in Cobol.

The hypothetical view case consisted of the documenta-
tion and presentations offered by the system supplier, who
argued that there was no reason for concerns on the qual-
ity of the system because of the layering, customization, and
data handling mechanisms that were included in the archi-
tecture. It was used to guide the design of the target model
and for finding potential architectural violations.

Refinement

Problem Statement

process designer reconstructor

Source Viewpoints

stakeholders

actor in

data flow
Information
Interpretation

Target Viewpoints
Mapping RulesProblem

StatementProblem
Elicitation

Concept
Determination

Source Viewpoints

Knowledge
Inference

Data
Gathering

Library of
Viewpoints

Target Viewpoints

Figure 2. Interaction during reconstruction design.

A selection of the relations contained in the source and
target views is shown in Figure 1. The relations are grouped
in a module viewpoint (first row) and a data viewpoint (sec-
ond row). The target view provides an architectural perspec-
tive of the system as implemented, while the source view
includes those relations that can be readily derived from the
system’s source code. As an example, the target model in-
cludes CRUD (Create, Read, Update, Delete) information in-
dicating how components manipulate data elements. In some
cases, this information may be directly available from the
sources (e.g., program file contains SQL statement). In the
system at hand, the source model was more complex, since
data manipulation was encapsulated in (generated) data util-
ities, requiring analysis of control (who calls these utilities)
and data flow (what parameters are passed to the utility).

The target model recovered helped to identify layering vi-
olations, data integrity checks that were bypassed, and ad hoc
mixture of custom and product code complicating upgrades
to future product releases.

4. Symphony Steps

Symphony has two stages. During Reconstruction Design,
the problem is analyzed, viewpoints for the target views are
selected, source views are defined, and mapping rules from
source to target views are designed. The Reconstruction Ex-
ecution analyzes the system, extracts the source views, and
applies the mapping rules to populate the target views.

Typically the two stages are iterated: Reconstruction exe-
cution reveals new reconstruction opportunities, which lead
to a refined understanding of the problem and a refined re-
construction design. The source viewpoints, target view-
points, and mapping rules evolve throughout the process.

The outcomes of Symphony are twofold: Reconstruction
Design results in a well-defined procedure for reconstructing
the architecture of the system. This procedure may be useful
beyond the scope of the current reconstruction: it can play
a role in continuous architecture conformance checking and
in future reconstructions. Reconstruction Execution yields
the architecture description needed to solve the problem that
triggered the original reconstruction activity.

Views

Views
Target
Views

Views
Architectural

stakeholders

Data

reconstructor

Repository
Data
Gathering

actor in

data flow

Knowledge
Inference

TargetSource

Information
Interpretation

Map

Views

Source

Figure 3. Reconstruction execution interactions.

The various Symphony reconstruction steps are illustrated
in Figures 2 and 3. Design steps include Problem Elicitation
and Concept Determination, and are discussed in Section 5.
Execution steps include Data Gathering, Knowledge Infer-
ence, and Information Interpretation, discussed in Section 6.

5. Reconstruction Design

During reconstruction design we distinguish problem elici-
tation in which the problem triggering the reconstruction is
analyzed and discussed with stakeholders, and concept de-
termination, in which the architectural concepts relevant to
the problem at hand and a recovery strategy are identified.

5.1. Problem Elicitation

Reconstructing architectures requires software architecture
experts to study a system and an active involvement of stake-
holder representatives, such as testers, developers, manage-
ment, the business owning the system, and system users.
These people are usually in strong demand in other places
of the project or the organization. Therefore, there must be
a compelling reason to start a reconstruction. Typical rea-
sons include performance problems, high maintenance costs,
poor reliability, and considerations concerning system re-
placement or system extensions. These reasons can typically
be collected in a short (one or two page) memorandum offer-
ing a management perspective on the problem at hand.

This memorandum forms the starting point for a software
reconstruction activity, and the first step is to elaborate this
problem statement. This is the purpose of Symphony’s Prob-
lem Elicitation step and requires the involvement of more
technical people in the problem analysis.

In our experience, individual technical people involved
in system development typically have a fairly good idea of
specific technical problems in their area of expertise (e.g.,
database administration, networking, user interfaces). In the
problem elicitation step these different perspectives should
be integrated into one overall picture.

There are several techniques that can be used during prob-
lem elicitation, such as structured workshops, checklists, role
playing, and scenario analysis. As an example, in the assess-
ment case discussed previously, we started with a workshop
for which all stakeholders were invited. In this particular

case, each participant was asked to report his best and worst
experience with the system analyzed.

Outcomes of Symphony’s Problem Elicitation step in-
clude summaries of interviews, workshop sessions, and rele-
vant discussions; summaries of available high-level relevant
documentation, if available; an elaboration and refinement
of the problem statement based on these summaries; and an
initial list of documentation and other resources that can be
used during the reconstruction.

Observe that the original memorandum, the collected
summaries and the refined problem statement may very well
be “architecture-agnostic”: they must be expressed in terms
familiar to the stakeholders. The translation of the problems-
as-perceived to software architecture concepts is the purpose
of the “concept determination” step.

The diversity of motivations for architecture reconstruc-
tion is exemplified by the four different case studies that
lead to the design of Symphony. Two of them, namely,
the Assessment and Nokia case, are true industrial cases.
The other two were conducted in an academic—nevertheless
realistic—setting to better understand architecture recon-
struction. As mentioned earlier, a more detailed description
of the case studies can be found in the appendix which is
contained in the full technical report [5].
Assessment case. The Assessment case (partly described
in [7]) involves an assessment of the quality characteristics of
a commercial software product written mostly in Cobol that
was being customized for a particular client. In the course of
the customization process (which took two years) the client
grew more and more concerned about the data integrity, reli-
ability, and maintainability. An independent assessment was
commissioned which should help to decide whether to con-
tinue the project. Source code and documentation were avail-
able for use in this assessment.
Nokia case. The products of Nokia are typically organized
in product families in order to reduce the development costs
and maximize the reuse of the assets. The architects’ needs
can be summarized as follows: (1) comprehending the as-
implemented architecture of the products, (2) managing the
organization of components and their logical dependencies
in the platform, and (3) enforcing conformance to architec-
tural rules. The main goal is to provide the architects with
up-to-date information by reconstructing the same architec-
tural views that they typically use during design.
Compiler case. In this case, the as-built architectures of
two large and complex compilers were to be compared
against a reference architecture. Although the actual moti-
vation was to evaluate an extension to the original reflexion
method by Murphy et al. [21], the case study can indeed be
viewed as a realistic task in which an as-built architecture is
to be compared against an idealized architecture.
Duke’s Bank case. The goal of this reconstruction was to
understand Duke’s Bank and to determine the abstractions to

mapping
rules

11

specifies

{OR} source
viewpoint

11

specifies

target
viewpoint

11 1

maps to

11

specifies

compared to

viewpoint for
hypothetical

view11

1 1

extracted from

11
specifies

map
**

{OR}

implementation
fact

source
view

*

**
target
view

111

abstracted from

hypothesized
architectural fact

**
hypothetical

view

11

11 1

*

**

Figure 4. Viewpoints and Views in Symphony

use in such a system. The motivation was to learn how to
reconstruct so that it can be done more efficiently for future
examples. An additional challenge in this case study was to
exercise the reconstruction with off-the-shelf tools, such as
Rational Rose, grep, emacs, etc.

5.2. Concept Determination

Once the problem is understood, the Concept Determina-
tion step is used to determine the architectural information
needed to solve the problem and the way to derive this in-
formation. In this step, the architect is a process designer,
defining the architectural reconstruction that will take place
in the final three steps.

There are five outcomes of this step, each of which is de-
scribed in the remainder of this section. The UML diagram
in Figure 4 summarizes the relationships involving the view-
points and mapping rules produced in this step.
Identify Potentially Useful Viewpoints. The first step to-
wards defining the target viewpoint is to identify a set of
viewpoints that contain the information the stakeholders be-
lieve will be needed to solve the problem as described in
Problem Elicitation. Stakeholders typically know which
viewpoints will be useful, or have at least some initial
ideas. After getting input from the stakeholders, the archi-
tect should review the problems and questions, looking for
additional useful viewpoints. Although the architect is re-
sponsible for producing the list of viewpoints, ultimately the
stakeholders must agree to them.

These viewpoints can come from a library of well-known
viewpoints, or a new viewpoint can be created for a spe-
cific reconstruction. If the problem is not understood well
enough to identify viewpoints of interest, the Problem Elici-
tation step should be re-applied.

One of the most commonly used viewpoints for architec-
ture reconstruction is the Module viewpoint [14]. It identifies
the layers, subsystems, and modules in the system and de-
scribes relationships (e.g. usage-dependency and decompo-
sition) among them. Other common viewpoints are the Code
architecture viewpoint, which describes directory structure

and build relationships, and the Execution viewpoint, which
describes the runtime entities and their mapping to physi-
cal resources [14]. The Conceptual viewpoint [14], describ-
ing the functionality of the system in terms of components
and connectors, is less commonly used for reconstruction be-
cause it is a more abstract view and is therefore more difficult
to reconstruct. (See also [4] for examples of Styles, which is
their term for viewpoints.)

The Module viewpoint was also used for all four case
studies. The Nokia and Duke’s Bank cases used the Code,
Execution, and Conceptual viewpoints in addition, whereas
the Assessment case study used two other viewpoints (Data
and Customization) in addition to the Module.

For reconstruction it may be useful to create new view-
points, ones which are not used in forward design. An exam-
ple is the Reflexion Model used by Murphy and Notkin [27].
Their Reflexion Model is based on the usage-dependency
relationship in the standard Module viewpoint. It contains
three relationships (convergence, divergence, absence) that
indicate whether the usage-dependencies reflected in the
source code conform to those in the hypothetical view.
Define/Refine Target Viewpoint. As Figure 4 shows, the
target viewpoint specifies the target view that will be an out-
put of the reconstruction process. The stakeholders should
also agree to the target viewpoint.

One useful approach for creating the target viewpoint is
to use the Stakeholder/View tables described in [4], adapted
somewhat for reconstruction. In its original form this is a
three-step process culminating in a prioritized list of views
needed for documenting a software system.

In Symphony, the first step, producing a candidate view
list, begins with the potentially useful viewpoints already
identified. Each of these should be listed along with the ex-
tent to which it is important for solving the problem. The sec-
ond step is to identify the specific relationships of each view-
point that are needed. The third step is to prioritize these re-
lationships and eliminate any duplicates. During this process
the architect should be thinking about similarities among the
relationships, which can be derived from others, which are
most critical to solving the overall problem, and should try
to consolidate them to arrive at the set of relationships in the
target viewpoint.

Not all relationships in the target viewpoint will come
from a standard viewpoint. For example, the Duke’s Bank
case is a J2EE application, where one servlet can “forward”
to another, and a jsp can “include” another. These were ini-
tially covered by adding a “module forw/incl/etc. module”
relationship to the target viewpoint. (In a later refinement
this relationship was combined with the usage-dependency
relationship, but that determination could not safely be made
at the outset.)

As another example, Figure 5 summarizes the Mur-
phy/Notkin Reflexion work in terms of Symphony. Here the

Starting Viewpoint Target Viewpoint Source Viewpoint Mapping Rules

Reflexion module convergence module dir contains dir Relation: file maps to module
(variant of module divergence module dir contains file Rules:
Module view) module absence module func alloc to file (fi calls fj) ∧ (fi alloc to filex) ∧ (filex maps to mm)
Module view module callsa module func calls func . . . ⇔ ((mm callsa mn) maps to (fi calls fj))

module callsh module ((mm callsa mn) maps to (fi calls fj)) ⇒ (mm callsa mn)
trace target to (module callsa module) (mm convergence mn) ⇔ (mm callsa mn) ∧ (mm callsh mn)
source view maps to (mm divergence mn) ⇔ (mm callsa mn) ∧ ¬(mm callsh mn)

(func calls func) (mm absence mn) ⇔ ¬(mm callsa mn) ∧ (mm callsh mn)

Figure 5. Viewpoints and Mapping Rules Used in Reflexion Example

target viewpoint contains relations extracted from the Mod-
ule and Reflexion viewpoints.

The Compiler case study used the Reflexion work as a
starting point, so initially its target viewpoint was the same
as in Figure 5. However, during the course of the recon-
struction it became clear that the target viewpoint needed to
be modified to support hierarchies of modules, so in a sec-
ond iteration the relationship “module contains module” was
added.
Define/Refine Source Viewpoint. The source viewpoint
specifies the source view. The source view will contain in-
formation extracted from the source code and gathered from
other sources; the source viewpoint formally describes this
information. The challenge in defining a source viewpoint
is to determine what information will be needed in order to
create the target views. Thus defining the source viewpoint
needs to be done in conjunction with defining the mapping
from source to target viewpoint.

In the Reflexion example (Figure 5), the source view-
point contains some architectural and some lower-level in-
formation, but all of it can be directly extracted from the
code. This was not true for all of our case studies: al-
though automatically-extractable facts formed the basis of
the source viewpoint in all, a few relied in addition on re-
lationships that can be populated only by manual interpreta-
tion of the sources. For instance, in the Compiler case, we
had to inspect the results of an overly conservative automatic
pointer analysis to filter out obviously wrong results.

The Assessment case study had a second iteration to re-
fine the source viewpoint. In the first iteration the definition
of the source viewpoint was driven by the information exist-
ing tools could produce. Since this was inadequate for pro-
ducing the desired target viewpoint, a second iteration was
used with a refined mapping and an expanded source view-
point.
Define/Refine Mapping Rules. The mapping rules are
ideally a formal description of how to derive a target view
from a source view. Realistically, parts will often be in the
form of heuristics, guidelines, or other informal approaches.
If a mapping can be completely formalized, the reconstruc-
tion can be fully automated. As said earlier, this is not typ-
ically possible for software architecture, thus we expect the
mapping to contain both formal and informal parts.

Figure 4 shows that the mapping rules specify the map.
The ’mapping rules’ entity is an association class connect-
ing the target viewpoint and source viewpoint. Thus it de-
scribes the ’maps to’ association between these two entities.
The map, as the instantiation of the mapping rules, describes
how specific implementation facts in the source view are ab-
stracted to architectural facts in the target view.

In the four case studies and the Reflexion example the
mappings all contain some informal parts. In the Reflex-
ion example and the Assessment case study, the relation “file
maps to module” must be manually populated to produce
the map. However, the rest of the mapping is a set of for-
mal rules used to compute the target views (Figure 5). Sim-
ilarly, the mapping in the Nokia case study relies primarily
on a series of transformations formalized in relational alge-
bra. At the other extreme, the mapping in the Duke’s Bank
case study contains a number of rules about how entities in
J2EE applications are related, but they provided only partial
information for creating the map. Most of the map creation
was done manually.
Determine Role and Viewpoint of Hypothetical Views.
In addition to the above activities, the stakeholders and archi-
tect must determine whether a hypothetical view is needed
and what its role will be. This role depends on the purpose of
the reconstruction. The most common roles of a hypothetical
view are as a guide during the reconstruction activity and as
a baseline to compare with the system’s current architecture.

When serving as a baseline there are two ways the com-
parison can be done. One is to create an explicit com-
parison view, with the comparison embodied in the tar-
get view. The Reflexion example and the Compiler case
study have such a target view: it identifies modules, usage-
dependencies among them, and identifies which of these
usage-dependencies match those in the hypothetical view
and which do not. In Figure 5 part of the target viewpoint
is the callsh relation, which specifies the hypothetical view
(called the ’high-level model’ in [27]).

The second way to use a hypothetical view as a baseline is
informally. In this case it is used in the last step, Information
Interpretation. Typically the architect browses both the target
view and hypothetical view, compares them, and based on
the results may decide to perform another iteration of the re-
construction process, modifying the target viewpoint, source
viewpoint, mapping, or some combination of these.

The Nokia and Assessment case studies used a hypotheti-
cal view both for guidance and as a baseline. The hypotheti-
cal view guided the definition of the target viewpoint, helped
in populating the map, and served as a baseline during Infor-
mation Interpretation.

The hypothetical view also has a viewpoint that must be
defined. If the hypothetical view is embedded in the target
view (as in the Reflexion example) then its viewpoint is de-
fined as part of the target viewpoint. This is shown as the
containment relationship between the two viewpoints in Fig-
ure 4. If the hypothetical view is not embedded, then typi-
cally its viewpoint is very similar to the target viewpoint so
that comparison is straightforward. In Figure 4 this is shown
as the ’extracted from’ relationship between the two view-
points.

6. Reconstruction Execution

During reconstruction execution, an extract–abstract–
present approach is used, tailored towards the specific needs
of architecture reconstruction. The three steps populate the
source view, apply the mapping rules to create the target
views, and interpret the results to solve the problem at hand.

6.1. Data Gathering

Intent. The goal of the Data Gathering step is to collect
the data that is required to recover selected architectural con-
cepts from a system’s artifacts. The motivation is that the
truth about the actual (concrete) architecture is in the sources.
However, in general, one can look at other artifacts of the
system than just its source code. These other artifacts in-
clude a system’s buildfiles/makefiles, (unit) tests, configura-
tion files, etc. The data gathered are stored in a repository
and processed in the Knowledge Inference step.
Examples. The types of data that we have gathered in the
case studies are described in Figure 6. These facts are at
a low level expressing knowledge in terms of source code
elements (hence the term source views). In Knowledge In-
ference these facts are abstracted (or lifted) to higher levels.
Techniques. Techniques for data gathering can be divided
in static and dynamic analyses of the system. Static analyses
analyze the system’s artifacts to obtain information that is
valid for all possible executions (e.g, program structure or
potential calls between different modules).

Dynamic analyses collect information about the system
as it executes. The results of such an analysis are typically
valid for the run in question, but no guarantees can be made
for other runs. Dynamic analysis is done by tracing the exe-
cution paths/profiles of the code and analyzing them for pat-
terns, sequences, and dependencies. Such traces can be col-
lected using code instrumentation, debugging, and profiling
tools, or by connecting to a (prepared) runtime environment.

Note that these kinds of analyses do not necessarily have
to be developed by the team that is using them to recover the
architecture. Suitable results can be imported from a wide
range of reverse engineering tools (such as clustering tools,
data flow analysis tools, etc.). In practice, often a pragmatic
mix-and-match approach for data gathering is applied, com-
bining the results from various extraction tools using script-
ing and glueing, for example, based on UNIX utilities such
as join, split, awk and perl.

Below, we will look a little further into methods for ex-
tracting facts from textual artifacts such as program code,
buildfiles, etc. since that is the most used technique for data
gathering. For a more detailed discussion of various meth-
ods for source model extraction, we refer to the related work
described in [24].

Manual Inspection. Our experiences show that some of
the data needed for a reconstruction project can be easily
gathered manually by: examining the directory structure, ob-
serving the behavior, or by exploring the source code for bea-
cons that signal aspects of interest [25]. In our cases, this in-
cluded for example the package structure and build relations
for Duke’s Bank and the verification of client-server separa-
tion in the Assessment case.

Lexical Analysis. Several tools are available that perform
lexical analysis of textual files. The most well-known is
probably grep that searches text for strings matching a reg-
ular expression. Tools like grep generally give little support
to process the matched strings, they just print matching lines.
Such support is available in more advanced text processing
languages such as awk, perl, and lex that allow one to ex-
ecute certain actions when a specific expression is matched.

The Lexical Source Model Extractor (LSME) uses a set
of hierarchically related regular expressions to describe lan-
guage constructs that have to be mapped to the source
view [26]. Use of hierarchical patterns avoids some of the
pitfalls of plain lexical patterns but maintains the flexibility
and robustness of that approach.

In our case studies, data gathering based on grep and
perl scripting was used for the Nokia case, parts of the
Assessment case and parts of the Duke’s Bank case.

Syntactic Analysis. Parser based approaches are used to
increase the accuracy and level of detail that can be ex-
pressed. These typically create a syntax tree of the input and
allow the users to traverse, query, or match the tree to look
for certain patterns. This relieves them from having to han-
dle all aspects of a language and focus on interesting parts.
The Compiler case study uses syntactical analysis (extended
with semantical analysis described below).

Fuzzy parsing. Fuzzy parsers are parsers that are able to
discard tokens and recognize only certain parts of a program-
ming language [19]. This can be seen as a hybrid between
lexical and syntactical analysis. These fuzzy parsers are hand
crafted to perform a specific task. They focus mainly on

Case Example Relation Extraction Technique

Assessment module containment, copybook usage lexical analysis using Java regular expression matching
dynamic program calls island grammars and data flow analysis

Compiler variable access parsing
dynamic function call parsing and points-to analysis

Duke’s Bank directory structure, build relationships manual inspection of directories/buildfiles
class inheritance and containment examination using Rational Rose and grep/emacs

Nokia directory containment, file inclusion, function calls lexical analysis based on regular expression matching

Figure 6. Some examples of the various data gathering techniques used in the cases.

parsing C and C++ to support program browsing. Typically
this involves extracting information regarding references to a
symbol, global definitions, functions calls, file includes, etc.

Island Grammars. Island grammars are a novel technique
that can be used to generate robust parsers from grammar
definitions [24]. Island grammars combine the detailed spec-
ification possibilities of grammars with the liberal behavior
of lexical approaches. The robust parsers generated from is-
land grammars combine the accuracy of syntactical analysis
with the speed, flexibility, and tolerance usually only found
in lexical analysis. This makes this approach very suitable
for developing source model extractors, even if the resulting
extractor is used only for a single project. The DocGen docu-
mentation generator used in our Assessment case uses island
grammars for data gathering [6].

Semantical Analysis. Additional techniques such as name
and type resolution, data flow analysis and points-to analysis
can be used to improve the results from other analyses (gen-
erally on a syntactical basis). For example, in our Compiler
case study, points-to analysis was used to determine more ac-
curate call graphs than could be retrieved from just applying
syntactical analysis. In the Assessment case study, a simple
form of data flow analysis was used to trace program calls
via a dynamic call handler.
Output. The output of the data gathering stage is a popu-
lated repository containing the extracted source views.

6.2. Knowledge Inference

Intent. The goal of the Knowledge Inference step is to de-
rive the target view from the source view (typically a large
relational data set describing the implementation of the sys-
tem). The reconstructor creates the target view by condens-
ing the low-level details of the source view and abstract-
ing them into architectural information. The mapping rules
and domain knowledge are used to define a map between
the source and target view. For example, if the mapping
contains a rule about using naming conventions to combine
classes into modules, the resulting map lists each class and
the module to which it belongs. This activity may require
either interviewing the system experts in order to formal-
ize architecturally-relevant aspects not available in the im-
plementation or to iteratively augment the source view by
adding new concepts to the source viewpoint.

Depending on the degree of formalization of the mapping,
this step can be fully or partly automated. We expect the
Knowledge Inference step to be conducted initially in close
cooperation with the system experts and, as more domain
knowledge becomes formalized, more automation is added.
This step can be summarized in the following activities: (1)
create the map (containing the domain knowledge), and (2)
combine the source view with the map to produce the target
view. In practice, the map is often created iteratively, with
each iteration refining the map or raising its level of abstrac-
tion until it can produce a satisfactory target view.
Techniques. Existing techniques can be categorized as
manual, automatic, or semi-automatic. Manual approaches
typically use simple, general-purpose tools and manual in-
spection of the system. While they may use reconstruction-
specific tools such as SHRiMP, Rigi, PBS, and Bauhaus to
help visualize intermediate results, there is no automated
support for the process (see for example [22]).

Semi-automatic approaches help the reconstructor create
architectural views in an interactive or formal way. They
typically rely on the manual definition of the map. Differ-
ences among the approaches concern the expressiveness of
the language used for defining the transformations, support
for calculating transitive closures of relations, degree of re-
peatability of the process, amount of interaction required by
the user, and the types of architectural views that can be gen-
erated.

Relational algebra approaches allow the reconstructor to
define a repeatable set of transformations for creating a par-
ticular architectural view. In the work of Holt et al. [15] rela-
tional algebra is used for creating a hierarchical module view
of the source code (by grouping source files into modules
and calculating the module dependencies). The reconstruc-
tor must manually prepare the containment relations, but new
relationships can also be inferred using algebra propositions.
Postma [28] uses relational partition algebra (RPA) [10] to
calculate module dependencies from dependencies extracted
from code. RPA is also used to check the conformance of an
extracted target view with a hypothetical view (established
in the design phase). The process is repeatable and is part
of the build process. Riva has proposed a method for infer-
ring the architectural information based on relational algebra
and Prolog [29]. Mens [23] uses logic meta programming

(Prolog) for mapping implementation artifacts to high-level
design and for checking conformance of architectural rules.

More light-weight examples are the Reflexion
Model [27], Tcl scripts for defining graph transforma-
tions in Rigi, SQL queries for defining grouping rules (Dali),
or the ad-hoc graph query language (GReQL) of GUPRO.

Fully automatic approaches are based on different kinds
of clustering algorithms: coupling, file names, concept anal-
ysis, type inference.

All the case studies fall into the category of semi-
automated approaches. The map between source view and
target view was created manually. The map bridged the gap
between conceptually different entities (e.g., source entities
versus logical component and connectors in the Duke’s bank
case) or concrete and hypothesized elements in the source
and target views (e.g., the mapping of concrete modules onto
hypothesized modules in the reflexion method for the Com-
piler case). The manual map, then, allowed to propagate and
lift relations between source entities to entities in the target
view automatically.

For the creation of the map, technological, organizational,
and often historical background knowledge as well as do-
main knowledge is required. For instance, the Duke’s Bank
case leveraged knowledge of web applications, the J2EE in-
frastructure, and recommended design patterns. J2EE types
provided information about which file executes in which
container and which classes are separate components. De-
sign patterns helped identify data-transfer classes and helper
classes. The application functionality guided decisions about
creating interfaces, combining classes into modules, and de-
termining connectors.

The mapping is often difficult because of hidden depen-
dencies. One interesting experience in the Duke’s Bank case,
for instance, was the identification of “logical” or “hidden”
interfaces. These were not explicitly visible in the source
code and were discovered only by studying the control flow
of the application and data sharing between classes that had
no explicit dependencies. Obviously, the quality of the data
gathering is key to a successful knowledge inference. The
realization of poor data quality forces us to reiterate the data
gathering with different means.
Output. The output is an enriched and structured reposi-
tory where the source view and the domain knowledge has
been combined to create the target view.

6.3. Information Interpretation

Intent. The target views—selected to address a particular
problem—are inspected, interpreted, and eventually applied
to solve the problem. To these ends, the target views need
to be made accessible both physically and mentally to all
stakeholders.
Motivation. The views that result from Knowledge Infer-
ence are not the answer to the problem but provide a foun-

dation to address the problem. In the Information Interpre-
tation, conclusions are drawn from the reconstructed views.
These conclusions then lead to measures to be taken to rem-
edy the problem. (The measures themselves are not part of
the reconstruction process.)

Ideally, the viewpoints were selected to allow an imme-
diate use of the views; however, even if the viewpoints are
carefully tailored, it might become difficult to get an answer
at the level of the target views because they may span a huge
information space. In such cases, presentations are required
that make this information space amenable to all stakehold-
ers. The presentation must be readable and traceable. Read-
ability relates to the ability to easily find and grasp relevant
information in the views; traceability allows us to trace the
inferred knowledge back to the original data.
Techniques. The scope of the presentation (i.e., the arti-
facts and their aspects to be presented) is already given in
form of the selected viewpoints and target views. The view-
ers and task to be achieved are stated in the Problem Elicita-
tion. We focus on presentation and interaction issues here.

Although the selected viewpoints define the vocabulary
and semantics for the representation, they do not define how
to present the information. Information presentation ad-
dresses this problem, where we take presentation quite lib-
erally: any means to communicate information to a viewer,
be it textually, graphically, or through other forms of human
perception including any form of interaction with the pre-
sentation. Sight is the most often addressed form of human
perception by information presentation in the software archi-
tecture domain; that is why we are using the narrower term
visualization instead of perception in the following.

Presentation issues have to do with effective visual com-
munication including the visual vocabulary, the use of the
specific visual elements to convey particular kinds of infor-
mation, the organization of visual information, and the order
in which material is presented to the viewer. Most applica-
tion domains have their own conventions and symbology that
should be used for the visual vocabulary and elements.

Due to lack of space, we refer the reader to overviews
on software visualization in the literature [33, 18, 2]. Yet,
at least we want to point out that graphs seem to be a ”nat-
ural” visualization of architecture elements and their (often
binary) relations, as confirmed by independent surveys that
indicate their popularity [2, 20] (in the end, class and object
diagrams in UML are just graphs with predefined semantics
and rendering characteristics). In the Compiler, Assessment,
and Nokia case studies, graphs were used to convey the in-
formation.

The aspect of interaction refers to the way the visualiza-
tion is constructed. Visualizations range from ”hard-wired”,
where the viewer has no influence on the presentation, to ar-
bitrary redefinition by the viewer. Visualizations should not
be static pictures, but should offer querying, zooming in and

out, navigation along cross-references and hierarchies, selec-
tive hiding, and gathering of transitive relations.

Some of the case studies used ”‘standard”’ elements, such
as hyperlinked HTML or PDF documents with embedded
UML diagrams (the Nokia and Assessment cases). UML
was also used in the Duke’s Bank case, but here the dia-
grams were crafted manually. Simple types of visualization,
namely, textual ones and tables, were also used where ap-
propriate (e.g., the Assessment case used tables for metrics).
The Nokia, Assessment, and Compiler cases used navigat-
able visualizations with zooming and filtering capabilities.

We believe that all case studies could have benefited from
more advanced and carefully selected means of visualiza-
tion. Visualization issues were brought up as an afterthought
and, hence, the potential of visualization was only partially
leveraged. The reason for this shortcoming is simply that
the means of presentation chosen in the case studies were
mostly opportunistically selected from available tools. The
focus in these cases was to solve the problem quickly with
available tools. As the initial processes are repeated more
often, we expect that their maturity will improve by a more
careful consideration of presentation issues.

A particular problem of software architecture is the need
to understand a combination of multiple views, which is fur-
ther complicated when the views are of conceptually differ-
ent viewpoints. There have been several suggestions to the
”view fusion” problem. If the views overlap in some of their
entities, one can use certain inferences to map entities with
no immediate correspondence to entities in the other view.
For instance, Kazman and Carrière use ”lifting” operations
along containment relations to fuse views [17]. If the entities
may be mapped onto source code, one could leverage over-
lapping source code regions to identify correspondencies be-
tween entities [3]. If there is no such simple correspon-
dence, the mapping is typically manual. Hillard, Rice, and
Schwarm [13], for instance, systematically cross reference
related entities from distinct views and use Ross’s model tie
process from Structured Analysis to integrate the views [30].
These cross-references are created as part of Symphony’s
Knowledge Inference in the form of the maps and stored so
that the connection among views is made explicit. The cross-
references may be implemented and inserted into the views
by available frameworks [1, 8]. Multiple views occured in all
case studies (in the Compiler case, the mapping and the de-
pendencies propagated from the source to the target entities
were also visualized).
Output. The output of the Information Interpretation is a
hyperstructure offering a holistic perspective on the software
system as a foundation for investigating the concrete archi-
tecture’s impact on the problems signaled. This hyperstruc-
ture includes traceability links between views and links to
other software artifacts, such as the source text, relevant doc-
umentation, etc. The ideal hyperstructure allows you to ex-

plore the system at various levels of abstraction: it lets you
zoom in and zoom out between sources and architecture and
navigate between views.

7. Concluding Remarks

In this paper we have presented Symphony, a software archi-
tecture reconstruction process that: (1) incorporates the state
of the practice, where reconstruction is problem-driven and
uses a rich set of architecture views; (2) provides guidance
for performing reconstruction, including pointers to appli-
cable technology; (3) allows specific reconstructions to be
systematically compared; and (4) allows reconstruction ap-
proaches to be systematically compared.

Symphony consists of two stages. The first stage (Prob-
lem Elicitation and Concept Determination) produces a re-
peatable and reusable reconstruction strategy that creates the
views necessary to address the original problem. Although
not an ultimate goal, the problem-dependent viewpoints cre-
ated or refined in the Concept Determination phase are an-
other reusable output of this stage.

The second stage of Symphony concerns the execution of
the reconstruction strategy. This stage operates only at the
level of views constrained by the viewpoints created before.
Their outcome is the foundation for addressing the problem
for which the particular reconstruction is carried out. A sec-
ondary outcome is the sequence of mappings from the source
views to the target views. This sequence allows one to trace
back the information in the views to the artifacts from which
they were derived.

This paper also shares real-life reconstruction experience
by presenting and comparing different case studies. Recon-
struction in practice is problem-driven, using not a fixed set
of views but ones chosen to solve the particular problem. The
viewpoints used in practice are not confined to the Module
viewpoint typically used in the research literature.

Viewpoint selection and definition is an important part of
the Symphony process. Using viewpoints to specify the input
and output of an activity allows us to decompose the recon-
struction process systematically and to review the outcome
of each activity. In addition, we can reuse an activity—once
defined and used for a reconstruction process—as a building
block to compose new reconstruction processes.

Symphony has been applied in academic and industrial
case studies and unifies other existing reconstruction tech-
niques and methods. The process model described in this
paper allows readers to leverage from that experience when
setting up their own architecture reconstruction efforts. We
provide a step-by-step methodology that can be followed and
give pointers for the selection of appropriate techniques and
methods for each of the phases.

In addition, Symphony provides a common reference
framework that can be used when classifying and compar-

ing various techniques and methods described in the litera-
ture. Such a common reference also helps people to report
on their own reconstruction efforts in a uniform way so that
others can easily understand it.

Last but not least, Symphony is a research tool: it helps
us to find and demarcate research problems in software archi-
tecture reconstruction. For example, Symphony’s viewpoint
emphasis calls for a catalog of reconstruction methods, tech-
niques, and experiences organized by viewpoints. Moreover,
it raises the question what reconstruction-specific viewpoints
exist. Symphony’s inclusion of mappings between source
and target views suggests finding a systematic way to dis-
cover and describe such mappings as a key research question.
Problems like these are hard to tackle. Symphony makes it
possible to address them on a case-by-case basis, offering its
process model as a way to classify and compare results.

Acknowledgements Arie van Deursen and Leon Moonen re-
ceived partial support from ITEA (Delft University of Technology,
project MOOSE, ITEA 01002), and SENTER (CWI, project IDE-
ALS, hosted by the Embedded Systems Institute).

References
[1] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. Chimera: hy-

pertext for heterogeneous software environments. In Proc. European
conference on Hypermedia technology. ACM, 1994.

[2] S. Bassil and R. K. Keller. Software visualization tools: Survey and
analysis. In Proc. Int. Workshop on Program Comprehension (IWPC),
pages 7–17. IEEE CS, May 2001.

[3] M. P. Chase, D. Harris, and A. Yeh. Manipulating recovered soft-
ware architecture views. In Proc. Int. Conf. on Software Engineering
(ICSE), pages 184–194. ACM, 1997.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2002.

[5] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva.
Symphony: View-driven software architecture reconstruction. Techni-
cal Report SEN-R0404, CWI, 2004. Available from http://www.
cwi.nl/ftp/CWIreports/SEN/SEN-R0404.pdf.

[6] A. van Deursen and T. Kuipers. Building documentation generators.
In Proc. Int. Conf. on Software Maintenance (ICSM), pages 40–49.
IEEE CS, 1999.

[7] A. van Deursen and T. Kuipers. Source-based software risk assess-
ment. In Proc. Int. Conf. on Software Maintenance (ICSM). IEEE CS,
2003.

[8] P. Devanbu, R. Chen, E. Gansner, H. Müller, and A. Martin. Chime:
Customizable hyperlink insertion and maintenance engine for soft-
ware engineering environments. In Proc. Int. Conf. on Software Engi-
neering (ICSE). ACM, 1999.

[9] L. Ding and N. Medvidovic. A light-weight, incremental approach to
software architecture recovery and evolution. In Proc. Working Conf.
on Software Architecture (WICSA), pages 191–200. IEEE CS, 2001.

[10] L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach to
support software architecture analysis. Software Practice and Experi-
ence, 28(4):371–400, 1998.

[11] P. J. Finnigan, R. C. Holt, I. Kalas I, S. Kerr, K. Kontogiannis, H. A.
Müller, J. Mylopoulos, S. G. Perelgut, M. Stanley, and K. Wong. The
software bookshelf. IBM Systems Journal, 36(4):564–593, Oct. 1997.

[12] G. Y. Guo, J. M. Atlee, and R. Kazman R. A software architecture re-
construction method. In Proc. Working Conf. on Software Architecture
(WICSA), pages 15–33, 1999.

[13] R. F. Hillard II, T. B. Rice, and S. C. Schwarm. The architectural
metaphor as foundation for system engineering. In Proc. Ann. Symp.
of the Int. Council on Systems Engineering, 1995.

[14] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture.
Object Technology Series. Addison Wesley, 2000.

[15] R. C. Holt. Structural manipulations of software architecture using
tarski relational algebra. In Proc. Working Conf. on Reverse Engi-
neering (WCRE), 1998.

[16] IEEE P1471-2000. IEEE recommended practice for architectural de-
scription of software-intensive systems, 2000.

[17] R. Kazman and S.J. Carrière. View extraction and view fusion in archi-
tectural understanding. In Proc. Int. Conf. on Software Reuse (ICSR),
1998.

[18] C. Knight and M. Munro. Mediating diverse visualisations for com-
prehension. In Proc. Int. Workshop on Program Comprehension
(IWPC), pages 18–25. IEEE CS, May 2001.

[19] R. Koppler. A systematic approach to fuzzy parsing. Software Practice
and Experience, 27(6):637–649, 1997.

[20] R. Koschke. Software visualization in software maintenance, reverse
engineering, and reengineering: A research survey. Journal on Soft-
ware Maintenance and Evolution, 15(2):87–109, 2003.

[21] R. Koschke and D. Simon. Hierarchical reflexion models. In Proc.
Working Conf. on Reverse Engineering (WCRE). IEEE CS, Nov. 2003.

[22] P. K. Laine. The role of sw architectures in solving fundamental prob-
lems in object-oriented development of large embedded sw systems.
In Proc. Working Conf. on Software Architecture (WICSA), 2001.

[23] K. Mens. Automating architectural conformance checking by means
of logic meta programming. PhD thesis, Departement Informatica,
Vrije Universiteit Brussel, 2000.

[24] L. Moonen. Generating robust parsers using island grammars. In Proc.
Working Conf. on Reverse Engineering (WCRE), pages 13–22. IEEE
CS, Oct. 2001.

[25] L. Moonen. Exploring Software Systems. PhD thesis, Faculty of Natu-
ral Sciences, Mathematics, and Computer Science, University of Am-
sterdam, Dec. 2002.

[26] G. C. Murphy and D. Notkin. Lightweight lexical source model ex-
traction. ACM Transactions on Software Engineering and Methodol-
ogy, 5(3):262–292, July 1996.

[27] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion mod-
els: Bridging the gap between design and implementation. IEEE CS
Transactions on Software Engineering, 27(4):364–380, Apr. 2001.

[28] A. Postma. A method for module architecture verification and its ap-
plication on a large component-based system. Information and Soft-
ware Technology, 45:171–194, 2003.

[29] C. Riva. Architecture reconstruction in practice. In Proc. Working
Conf. on Software Architecture (WICSA), 2002.

[30] D. T. Ross. Removing the limitations of natural languages (with the
principles behind the RSA language). In Proc. the Software Engineer-
ing Workshop. Academic Press, 1980.

[31] C. Stoermer, L. O’Brien, and C. Verhoef. Practice patterns for archi-
tecture reconstruction. In Proc. Working Conf. on Reverse Engineering
(WCRE). IEEE CS, 2002.

[32] S. Tilley, S. Paul, and D. B. Smith. Towards a framework for program
understanding. In Proc. Int. Workshop on Program Comprehension
(IWPC), pages 19–28. IEEE CS, 1996.

[33] M. Wiggins. An overview of program visualization tools and systems.
In Proc. 36th Annual Southeast Regional Conf., pages 194–200. ACM,
1998.

