
UML-based Reverse Engineering and Model Analysis Approaches for Software 
Architecture Maintenance 

Claudio Riva1, Petri Selonen2, Tarja Systä2, Jianli Xu1

 
1Nokia Research Center  

Software Technology Laboratory 
{claudio.riva | jianli.xu}@nokia.com 

 
2Tampere University of Technology 

Institute of Software Systems 
{petri.selonen | tarja.systa}@tut.fi 

 
ABSTRACT 
This paper proposes a UML-based software maintenance 
process.  The process is guided by architectural 
descriptions and existing architectural models. The 
descriptions are given as variants of UML profiles 
describing the styles and rules relevant for a particular 
application domain. A reverse engineering subprocess, 
combining top-down and bottom-up reverse engineering 
activities, aims at constructing the architectural models. 
Resulting models are investigated in a model analysis 
subprocess. The models are checked against the profiles 
to find violations against the given architectural rules 
when maintaining and developing the subject system, and 
they are further analyzed using a set of UML model 
processing operations. The proposed approach is applied 
for maintaining a large-scale product platform 
architecture and real-life product-line products built on 
top of this platform. The model analysis results of the 
case study are discussed. 
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1 INTRODUCTION 
The Unified Modeling Language (UML) [OMG02] has 
established itself in software industry for describing 
software models. This paper discusses a UML-based 
software maintenance process relying on two 
subprocesses: reverse engineering and model analysis. 
The former combines a top-down reverse engineering 
technique with traditional bottom-up reverse engineering 
activities, while the latter utilizes a set of UML model 
processing techniques for analyzing the architecture 
models. During the evolution of the software architecture, 
the whole procedure is iterated for individual releases of 
the subject system. The main driver of the presented work 
has been to enable the software architects to analyze the 
structural dependencies that exist in large software 
systems. Those dependencies are often unclear, hidden in 
the details of the implementation or just not shown at the 
right level of abstraction. Hence, the typical search to 
extract “the big picture” of the system can bring up a 
clear understanding of its major components and their 

interactions. 

To customize UML for a certain domain or for certain 
(e.g. company-specific) design or architecting policies, 
UML profiles [OMG, Sec. 2.14] can be used. A profile is 
essentially an extension the UML specification using its 
built-in extension mechanisms. We define an 
architectural profile [SeX03] as a UML profile variant 
which presents a set of architectural rules and specifies a 
subset of UML models that can be considered legal in a 
particular context. In essence, the architectural profiles 
describe an architecture modeling language that the 
designer must follow.  

In the reverse engineering subprocess, finding the 
mappings between the source code and the UML 
architectural descriptions requires several steps. The 
subprocess is guided by the architectural profile 
descriptions constructed for a product line, product 
family, or product platform under investigation: the 
profile defines what concepts are architecturally relevant 
and to be recovered from the implementation. When 
maintaining software architectures, changes in the source 
code during the evolution of the software need to be 
mapped and reflected against the architectural 
descriptions and rules. These rules and profile 
descriptions as well as the pre-existing software 
architecture models can be used to guide the reverse 
engineering process, especially when constructing 
abstract and design level UML models from the extracted 
low-level data. Still, the construction of UML models 
from the source code is far from straightforward, even if 
an object-oriented programming language has been used.  

Because of the differences in concepts at the design and 
implementation levels, interpretations are necessary even 
for the extraction of class diagrams from the source code. 
Currently available CASE-tools supporting UML-based 
reverse engineering are rarely able to produce other 
models besides class diagrams [Kea02]. Consequently, 
we use a middle model, containing the detailed and 
accurate information of the subject software, from which 
the UML views are constructed. This way, the reverse 
engineer has a better control on the model construction 
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 Figure 1. Overview on the maintenance process 

process. The graph-based middle model further allows the 
composition of alternative views and abstractions. 

In the model analysis subprocess, the models are checked 
against the profiles to indicate whether the given 
architectural rules have been followed when maintaining 
and further developing the subject system. Also, various 
UML model processing operations can be defined and 
used e.g. to build alternative abstractions and to compare 
different versions of the software architecture and to find 
out how it has been evolved.  The operations can be used 
e.g. to compare the original design-level models against 
the models reverse engineered from the source code. We 
have developed a technique and a tool for validating a 
given UML model against the architectural profiles 
[SeX03]. The architectural profiles should be followed 
correctly in the architecture design and maintenance 
process in order to guarantee that the resulting 
architecture design has necessary properties, or lacks 
undesirable ones. The used model processing operations 
have been implemented on top of a CASE-tool 
independent model processing platform xUMLi 
[Aea02][PeS04]. 

This paper introduces the architecture maintenance 
approach and gives examples of its application for 
maintaining a large-scale product platform architecture 
and real-life product-line products built on top of this 
platform. 

2 OVERVIEW OF THE APPROACH 
Usually a system under development can be seen at 
several levels of abstraction: starting from the most 
abstract level, we can have requirements, architecture 
models, design models, and finally implementation at the 
most detailed level. In addition, even new systems built 
from scratch typically rely on, or are subject to, existing 
architectures and platform or domain specific rules and 
restrictions. A system is typically not static but evolving 
over time due to e.g. changing requirements, changing 

technologies, bug fixes, adding of features, and re-
engineering. To be able to maintain a software system, a 
necessary level of design documentation must usually be 
kept up and maintained in synch with the actual 
implementation model. When there are changes in the 
system, these changes should propagate through the 
whole model hierarchy. This is essential to produce a 
well-maintained model. 

With a single system, the synchronization of the model 
hierarchy can be done by hand, though this is often 
tedious and error-prone. However, when the focus is 
switched onto product lines, product families, and 
product platforms, the importance of the models 
dramatically increases, as does the effort involved in 
maintaining them. Changes in product platforms affect all 
its products depending on the particular architecture. 
When several products and several design teams are 
involved, the need to be able to specify domain, product-
line, and product platform specific conventions, rules, and 
restrictions grows more important.  

Figure 1 illustrates the overall maintenance process 
described in this paper. The two enclosed subprocesses 
are a reverse engineering process (RE-process) and a 
model analysis process (MA-process). These processes 
involve the tools, techniques, and also design decisions 
made by participating designers. The scheme also 
includes three models. The implementation model, 
typically represented as (nested) graphs in reverse 
engineering tools, includes both the source code and more 
abstract representations in a suitable format. The 
architectural views are architecture representations and 
analysis views in UML. The architectural profiles 
describe the domain-specific concepts and architecture 
conventions, styles, restrictions, and rules as a set of 
UML profiles. 

The RE-process combines bottom-up and top-down 
reverse engineering approaches. The existing 



 

architectural views (if any) and architectural profiles 
guide the subprocess from a top level. The 
implementation-level artifacts are gradually abstracted 
and mapped to the high-level concepts. The result is a 
new (set of) architectural views, translated into UML. 
The MA-process analyzes these architectural views 
against architectural view profiles and existing 
architectural views, either against previous versions or 
reference models (e.g. forward engineering models, 
reference architectures). 

Both subprocesses build new models based on existing 
ones. In addition, human interaction is involved 
throughout the whole maintenance process and affects the 
included subprocesses. Consequently, the maintenance 
process is not static but incremental and iterative: new 
versions of architectural view profiles, architectural 
views, and implementation models are produced 
whenever necessary. Both involved processes are self-
improving: during each iteration cycle, they are evaluated 
against the new and existing models and modified 
accordingly if necessary. 

As a typical usage scenario for the process, consider a 
situation where a (potentially outdated) forward 
engineered architecture model already exists. An initial 
description of the domain is mapped to a first version of 
an architectural profile. The process goes as follows: 

1. The RE-process takes the existing forward 
engineered model, together with the architectural 
profiles, as its top-down level input. Guided by 
them, the bottom-up reverse engineering is started. 
After generating a set of intermediate model 
representations, each typically raising the level of 
abstraction, a suitable level of abstraction is reached. 

2. The architecture model generated in step 1 is 
mapped into UML views to be used by the MA-
process. 

3. The MA-process validates the architecture model 
generated in step 2 against the architectural view 
profiles and reports the incidents potentially 
violating the domain-specific conventions and 
selected architectural styles and constraints. The 
MA-process can compare the new set of 
architectural views against the previously generated 
ones. 

4. The results obtained in step 3 and additional view 
generation (i.e., merging, slicing, synthesis) are 
analyzed and necessary steps are taken, either to 
improve the MA-process, the RE-process, or the 
architecture model itself. 

5. The changes introduced in step 4 are mapped back 

to the implementation model. 

6. The changes in the implementation model, the 
architectural profiles, and the architecture models 
are, in turn, used for modifying RE- and MA-
processes. 

The cycle can begin again from step 1. 

The process described in Figure 1 does not in any way 
dictate in which order the overall process is executed, nor 
does it take any position on how the subprocesses are 
constructed: what tools should be used, what the models 
should be like, etc. Experience suggests that the process, 
subprocesses, and related techniques should be – and 
must be – customized for every domain they are applied 
to. A process execution cycle can modify several models 
simultaneously. Since the description of the processes can 
also be seen as models, the models themselves are subject 
to changes and improvements. 

3 APPLYING ARCHITECTURAL PROFILES 
Architectural profiles represent the common architecture 
modeling language shared by both the RE- and MA-
processes, usually in the form of a conceptual profile and 
a group of view profiles [SeX03]. The conceptual profile 
defines the fundamental concepts (types) that are used 
throughout the entire architecture design and description, 
and the view profiles specify the concepts and rules that 
are specific only to this architectural view. We define a 
view profile for each selected architectural concern of the 
architecture descriptions. Together the architectural 
profiles are put in a profile hierarchy where all the view 
profiles depend on the conceptual profile. A view profile 
may depend on other view profiles as well, depending on 
its properties.  

Next, we present a profile hierarchy, corresponding 
profiles, and the process of establishing the two. While 
they are tied to a particular case study, they should go on 
to illustrate the adopted profile-based approach. The case 
study, concerning a product-line of mobile terminal 
software built on top of a common platform, is discussed 
in more detail Section 6.  

The original software architecture of the product platform 
was described in a platform reference architecture 
document and an architecture design model. Basic UML 
notations, mainly class diagrams, were used for 
describing the reference architecture and the logical view 
model [RXM01]. The platform reference architecture 
document is a textual document with some 
complementary UML diagrams. The reference 
architecture document describes the architecture style 
used, namely a client-server style, the types of all the 
architectural elements and their relationships, and the 



 

interaction patterns between them. To use our tools for 
automating the architectural model validation process, we 
transformed the reference architecture descriptions into 
UML architectural profiles.  
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<<import>>

Layer View Profile<<import>>

<<import>>

 

Figure 2. Profile structure 

Figure 2 shows the profile structure of the mobile 
terminal software architecture used in our case study. 
There are two view profiles: Package Structure View 
profile and Layer View profile. All profiles have two 
parts, a stereotype definition part that defines the types of 
architectural elements with UML stereotypes, and a 
constraint part that specifies the allowed relationship 
among those types. 

Conceptual Profile 
The Conceptual Profile describes the conceptual model 
that specifies the architectural style and the validation 
rules with class diagrams. Figures 3 and 4 show examples 
of the stereotype definition for the mobile terminal 
software system model. Figure 3 defines four logical 
component (or design components in contrast to 
implementation components): Server, Application, 
Delegate, CommonApp. Figure 4 defines two logical 
dependency types: message and invocation. 

Class
<<metaclass>>

Application
<<stereotype>>

Server
<<stereotype>>

Logical Component
<<stereotype>>

CommonApp
<<stereotype>>

Delegate
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

GeneralizableElement
<<metaclass>>

<<stereotype>>

<<stereotype>>

Figure 3. Stereotype definitions for components in the 
conceptual profile 

Figure 5 presents one example of the constraints in the 
conceptual profile describing the allowed relationships 
between the architectural concepts. The profile essentially 

specifies the interfaces, their realizers, and the classifiers 
depending on them. The constraints of the profile must be 
satisfied in the architecture model. Figure 5 effectively 
defines the basic architectural style of the software 
system: a client-server system with message-passing 
interactions. 

Dependency
<<metaclass>>

message
<<stereotype>>

invocation
<<stereotype>>

Logical Dependency
<<stereotype>>

<<stereotype>><<stereotype>>

<<stereotype>>

 

Figure 4. Stereotype definitions for dependencies in 
the conceptual profile 

Package Structure View profile 
The Package Structure View profile defines how the 
system is decomposed into a hierarchy of namespaces 
(subsystems, packages) and which namespaces are 
allowed to reside under each other. Figure 6 shows a 
simplified example of the profile: on the left side the 
package types are defined through stereotypes and, on the 
right side we define the constraints of the system 
decomposition structure. ISA Packages are the highest-
level packages and can contain Sub-Packages. Sub-
Packages can contain other Sub-Packages, or Logical 
Components. This package hierarchy mainly describes a 
functional decomposition of the system, but it also serves 
as a means of organizing and managing both the design 
and implementation artifacts. 

... A Server
<<Server>>

... An Application
<<Application>>

... A Server Interface
<<Service IF>>

... A Delegate App
<<Delegate>>

... A Delegate IF
<<Delegate IF>>

... A Common App
<<CommonApp>>

... A CommonApp IF
<<Service IF>>

... Another Server
<<Server>>

... Another Common App
<<CommonApp>>

<<message>>

<<message>> <<message>>

<<message>>

<<invocation>>

<<message>>

<<invocation>>

<<message>>

Figure 5. Constraint definition  for the conceptual profile. 

Layer View Profile 
The layer view profile introduces a conceptual 
decomposition of the system. The stereotype definition 



 

part in Figure 7 introduces the concept of a layer and 
three specific layer types. The constraint profile specifies 
how to a layer can be composed of the architecture 
concepts defined in other profiles and what dependencies 
are allowed between the layers (left-hand and right-hand 
side of Figure 8, respectively), effectively leading to a 
three-layer architecture style. After architecture model 
elements are mapped to the presented concepts, the model 
can be recomposed and the relationships checked. We can 
also define other conceptual views by giving alternative 
system decomposition, for example, to define an 
organizational view showing the development teams and 
their relationships based on the components they are in 
charge of.  

Subsystem
<<metaclass>>

ISA Package
<<stereotype>>

<<stereotype>>

Sub Package
<<stereotype>>

<<stereotype>>

... A Logical Comp
<<Logical Component>>

... Another Sub Package
<<Sub Package>>

... A Sub Package
<<Sub Package>>

0..*

1

0..*

1

0..*1 0..*1

... A Top-level Package
<<ISA Package>>

1..*

1

1..*

1

 

Figure 6. Example of package structure view profile 

Subsystem
<<metaclass>>

Arch Layer
<<stereotype>>

UI&App Layer
<<stereotype>>

Service&Resource Layer
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

HW Control Layer
<<stereotype>>

<<stereotype>>

 

Figure 7. Layer definition in the layer view profile 

4 REVERSE ENGINEERING PROCESS 
The goal of this activity is to recover the architectural 
model from the implementation of the products and to 
construct the architectural views. The process is based on 
a series of transformations that abstract the facts extracted 
from the implementation in the UML model. Starting 
from our previous work [Riv00], we have elaborated a 
robust architecture reconstruction process based on the 
selection of the views to recover [Deur04]. 

The target view of the reconstruction is the Component 

View. The view describes the logical components and 
their logical dependencies as defined in the Conceptual 
Profile, and their hierarchical organization as defined in 
the Package Structure View profile. The component view 
also calculates the high-level dependencies among the 
packages. The Conceptual Profile defines what concepts 
are architecturally relevant for the product family and 
must be recovered from the implementation. In this way, 
the reconstruction process is completely driven by the 
concepts in the profile. 

... A Sub-Package
(from Package Structu...)

<<Sub-Package>>

... A Layer
<<Arch Layer>>

1..*

1

1..*

1

     

... An UI&App Layer
<<UI&App Layer>>

... A Service&Resource Layer
<<Service&Resource Layer>>

... A HW Control Layer
<<HW Control Layer>>

<<invocation>>

<<Logical Dependency>>

 

Figure 8. Construction and dependency rules of layers 

The process consists of the following tasks: (1) mapping 
the logical concepts to the implementation, (2) gathering 
the data into a component inventory, (3) constructing the 
architectural views, and (4) representing the views in 
UML. The process is tailored to our particular product 
family and it can be applied on all the various products. 

Mapping the logical concepts to the implementation 
The first task is to identify how the entities in the 
Conceptual Profile are mapped to the implementation. 
The logical components of Figure 3 are runtime elements 
and become active they register to the communication 
infrastructure. Discussions with the architects identified 
the practical rules for identifying the components in the 
source code: the source files of the component are 
typically, but not necessarily, located in one single 
directory and for each component there is a runtime 
configuration file. There is no easy way to map the files 
to the component and, thus, we manually mapped 
approximately 20.000 files to the logical components. 
The mapping table was created by analyzing the build 
process and with the help of the domain knowledge of the 
architects.  

As shown in Figure 4, there are two types of 
dependencies: asynchronous messages and function 
invocations. Messages are sent between components 
through the communication infrastructure. In the source 
code, we can identify a message passing from particular 
code patterns that are used to interact with the 
communication library. The runtime recipient of the 



 

message is statically detectable in most of the cases. 
Function invocations are made through macros provided 
by the programming language (a variant of C).  

Data gathering and the component inventory 
The second task is to gather all the relevant information 
from implementation and to store it in a component 
inventory (a relational database). The analysis of the 
source files is completely automated and carried out by a 
Python script that detects various patterns defined by 
regular expressions. The output of the analysis is a 
relational dataset that is directly stored in the database. 
The information about the hierarchical organization of the 
components have been prepared together with the 
architects and stored in the repository. The dependencies 
are used to calculate the high-level dependencies between 
the packages and stored in the repository as well. The 
final component inventory contains a list of all the 
recovered components, (with information about the type, 
the owner, the runtime task, the source files), the package 
structure, and the dependencies. Since our goal is to 
create an architectural view of the overall platform of the 
family,  we analyze the single products and merge the 
final results. 

Constructing the architectural views 
From the component inventory we can generate various 
architectural views about the family platform: component 
view (the logical components and the logical 
relationships), task view (task allocation and inter-task 
communication), development view (organization of the 
source code and their dependencies), deployment view 
(physical location of components in the processing units), 
feature view (run-time implementation of a feature), and 
organizational view (organization of the development 
activities like projects, programs, sites). The construction 
of the view is done by querying the basic data from the 
repository and by applying several rules specified with 
relational algebra. In the case of the component view, we 
query the logical components, packages and logical 
dependencies. 

The result can be typically visualized as a hierarchical 
directed graph where the nodes represent packages and 
components and the arcs represent logical dependencies. 
We can export the graphs in various formats: hyperlinked 
pages, SVG, Rigi1 and other visualization tools. 

Transforming the views into UML 

The final task of the reverse engineering activity is to 
transform the component view to the UML language. We 
map the logical packages to UML stereotyped packages 
                                                           
1 Rigi: http://www.rigi.csc.uvic.ca/ 

and the logical components to UML stereotyped classes. 
The logical dependencies are mapped to UML 
stereotyped dependencies. Figure 9 shows an example of 
the reverse engineered component view in UML format. 
It shows the top-level packages and the high-level 
dependencies. 

 

Figure 9. The Package Structure View in UML 

5 MODEL ANALYSIS PROCESS 
The model analysis process is supported by tools and 
techniques for analyzing and processing the architecture 
model produced by the RE-process. In the following, 
some of the tools and techniques are explained. 

Architecture validation against profiles 
The UML architectural profiles are used as the 
mechanism for introducing lightweight extensions to the 
UML metamodel, describing domain-specific 
architectural conventions, rules, and constraints. From a 
practical viewpoint, the profiles can be seen as visual 
shortcuts representing examples of allowed architectural 
constructs. Their interpretation is given by evaluating 
them in a posteriori fashion by a selected set of 
conformance rules. Together, the set of profiles and the 
rule configuration define an architecture language. The 
architecture model is validated against these profiles and 
the found non-conformant incidents are reported. The 
approach is discussed in more detail in [SeX03]. The 
interpretation of the profiles follows the outline given in 
Section 3. 

The incidents are interpreted by the architects and acted 
upon accordingly. If the violations are premeditated due 
to e.g. performance issues, no action needs to be taken. If 
the incidents are real architectural violations, the 
corresponding changes must be made, both to the 
architecture model in case of an existing forward or 
round-trip engineering process, and to the implementation 
model. These changes, in turn, are reflected to the reverse 
engineering process. If the incidents are found non-
relevant, the profiles and/or validation configuration must 
be modified. The tool, artDECO [SeX03][PeS04] 



 

together with a suitable validation configuration performs 
the validation of the architectural views against the 
architectural profiles in practice. 

Model processing operations in the analysis process 
In addition to the profile-based architecture validation 
process, a set of model processing operations [SKS03] can 
are used for analyzing and reasoning about the 
architectural views. The model processing operations 
(e.g. transformations, set operations, abstractions) can be 
used for generating new transient views to the system 
under observation. Ideally, they result in increased 
program comprehension, based on which additional 
decisions on the development of the system can be done. 
The model processing operations are built on top xUMLi. 

A particularly interesting category of model processing 
operations in the context of this work are set operations 
[Sel03][Ven04]. The set operations can be used, among 
other things, for comparing different model versions, and 
for performing model slicing based on a given criterion. 
If a later architecture model version is compared against 
an earlier one, the differences (i.e., added, removed, and 
migrated parts) can be focused on when estimating the 
impact of the changes. The same applies even if the 
second model is a forward engineering model or a 
reference architecture description, given that a 
correspondence relationship between them can be 
established. The deviations can then be seen as potential 
architecture violations, analogously to the artDECO 
incidents. The role of the set operations and model 
comparison is further increased, should there exists a 
forward engineering model to be simultaneously 
maintained. A similar technique has been applied on 
comparing the reverse engineering capabilities of UML-
based CASE-tools [Kea02]. 

Other categories of model processing operations can be 
used as well. Projection operations can be used for 
generating dedicated slices of the architectural views. 
Transformation operations can be used for migrating 
information: for example, if the reverse engineering 
process is able to produce complimentary execution 
traces in the form of UML sequence diagrams, these 
diagrams, when transformed into structural 
representations [SKS03], can be used as a slicing 
criterion for slicing the original model using the set 
operations. Model processing operations and their usage 
has been addressed e.g. in [SKS03][PeS01]. 

6 THE MAINTENANCE PROCESS IN 
PRACTICE: MODEL ANALYSIS IN THE ISA 
CASE STUDY 

The target system for the maintenance process, hereafter 
referred to as ISA, consists of a large-scale product 

platform architecture and real-life product-line products 
built on top of this platform. The domain is embedded 
software for mobile products. Roughly, the target 
architecture model has around 150 subsystems, 1000 
components, and 15000 dependencies. 
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 Figure 10. Maintenance process for the ISA platform 

In the ISA case study, a forward engineered model (F-
model) and profile platform architectural profiles are used 
to guide the construction of reverse engineered model (R-
model) for further analysis as described earlier. In later 
maintenance activities, new R-models are constructed and 
analyzed against the profiles and previous versions of the 
R-models. Figure 10 shows this maintenance process, 
which shows an instance of the architecture maintenance 
process depicted in Figure 1 for the ISA case study.  

Profile-based architecture validation 
The architectural profiles for the target models have been 
described in Section 3. Table 1 lists the architectural 
concerns, together with their UML interpretations, that 
the artDECO tool has been used for validating. 

Table 1. UML interpretations of architectural 
concerns 

Architectural concern UML interpretation 

Validate that only the 
architectural concepts 
allowed by the domain are 
being used 

Check that all classes, 
packages, and dependencies 
have stereotypes defined in 
the architectural profiles 



 

Validate that only allowed 
relationships between the 
architectural concepts are 
being used  

Check that all used 
dependencies have been 
defined in the architectural 
profiles 

Validate that the interfaces 
are correctly realized 

Check that the interfaces have 
been properly defined in the 
architectural profiles and that 
there exists proper realizers 
for them 

Validate that the number of 
relationships between 
architectural concepts are 
correct 

Check that the number of 
associations between concepts 
conforms to the multiplicity 
definitions in the architectural 
profiles 

Validate that the physical 
composition hierarchy of the 
architecture conforms to the 
domain-specific conventions 
(i.e., Top-Level packages – 
Subpackages – Components) 

Check that the package 
containment hierarchy and 
owned classes follow the 
parent – child relationships 
defined in the packaging 
profiles 

Validate that the system 
conforms to a three-layer 
architecture style 

Check that all the 
dependencies between classes 
belonging layers defined in 
the layering profiles (realized 
as namespace hierarchies) are 
directed from a higher-level 
layer to a lower-level layer 

The F- model has been synthesized from existing non-
UML architectural descriptions (e.g. databases and Excel 
sheets). While it provides an interesting starting point, we 
plan to reconstruct the platform architecture model after 
we gain enough experience from the application of RE-
process. The validation process reported around 100 
stereotype violations, 1000 invalid interface 
dependencies, and 100 illegal dependencies between 
layers. The latter were found to be relevant problems in 
the F-model, reflecting the fact that the system was not 
originally designed to follow a layered architecture style, 
and most of the dependencies were introduced without 
following the layering principles.  

Most of the other violations were related to stereotype 
mismatches, but the results still revealed over 100 real 
violations. Due to the significant number of violations for 
a design model, a further investigation was performed. 
The F-model turned out not to be strictly a design model. 
Many component-level details, especially their 
dependencies, actually stem from the architects’ 
impressions of the implementation, and reflected many ad 
hoc solutions in the implementation. It became evident 
that the architects tried to close the gap between the 
designed and implemented architecture before the RE-
process was applied. The effort obviously failed but 
resulted in an architecture model residing between the 

two worlds.  

The R-model was produced by the RE-process described 
in Section 4. After analyzing the initial validation results, 
improving the RE-process and the MA-process, and 
refactoring the profiles, the reported incidents included 
about 300 stereotype violations, 5000 illegal 
dependencies, and 650 layering violations. All stereotype-
related incidents resulted from the usage of architectural 
types known to be invalid a priori, i.e., components and 
elements the RE-process was unable to map to existing 
architectural concept.  

Of the reported dependencies, around 3700 of the 
incidents are genuine, i.e., not involving an element 
whose stereotype is reported invalid. Obviously, many of 
the violations originated from the quick’n’dirty solutions 
(e.g. during bug fixing) under the time-to-market 
pressure. But the initial findings from the investigation 
still revealed at least the following sources of the 
problems both in the implementation and the MA- and 
RE-processes: 

1. Evolving and incomplete profiles. When new 
stereotypes were introduced, the constraints of the 
dependencies regarding them could not be completely 
specified, and some of them were even left open. The 
dependencies (usually legal ones) that were not covered 
by the profiles were reported illegal by the artDECO 
tool.  

2. Components having inappropriate stereotypes. Some 
components with a certain stereotype actually played 
different roles than what had been defined by the 
stereotype. This discovery shows that on one hand the 
hints or rules used by the RE-process to recognize the 
component types should be improved, and on the other 
hand the design and implementation of those 
components should be reviewed. 

3. Sharing of code in the same development team. Many 
illegal dependencies occurred between the components 
that were implemented by the same team or several 
closely cooperating groups working on the same 
feature or feature set. As an example, a component can 
share a function from another component with a 
function call. This can easily create an illegal 
dependency regarding to the design principles, simply 
because the developers can be physically located near 
each other or the components may even originate from 
the same developer.  

4. Dependencies introduced due to performance and 
other non-functional requirements. Some of the 
dependencies short-cutting across layers involved top 
layer components directly invoking the functions of the 



 

bottom layer components by-passing the middle layer. 
The dependencies of this category are special and 
considered to be allowed in a real-time and embedded 
system. However, they must be monitored and 
controlled closely within a very limited scale. 

5. Inappropriate function allocation. Our investigation 
showed that several components controlling global data 
had been placed in the top layer. Most of the 
components in the lower layers depended on them, and 
this was the source of most of the layering violations. 
The investigation showed that two of them had the 
client stereotype and one had an unmatchable 
stereotype. Just these three components were able to 
cause over 1000 illegal dependencies. 

These findings gave valuable feedback for improving the 
architecture design and implementation, maintenance of 
the architectural profiles, and the MA- and RE-processes. 

Applying UML model processing operations 
When a new architecture model is generated, it is often 
useful to compare it to the previous architecture model 
versions. In the context of this work, the comparison is 
done with the set operations. The commonalities and 
differences between the models are detected and 
presented to the user both as a (set of) UML diagram(s) 
and as a summary report, focusing attention of the 
designer to the variations between the two models. The 
model against which the new model is compared can 
either be a previous version of the architecture model, a 
reference architecture model, or a forward engineering 
model. The results can be further processed using the 
other available model operations. Some of the possible 
changes in the architecture models include addition, 
removal, change, and migration of components and 
subsystems, and addition, removal, and change of 
dependencies. 

The application of set operations requires mechanisms for 
detecting the correspondence of model elements 
belonging to the two input models. With the ISA case 
study, this is straightforward: the names of subsystems 
and components have a global mapping and are thus 
unique. The dependencies are then identified through 
their end elements and types. As an example, an 
interesting subsystem was selected and two consecutive 
versions were compared.  

Another particularly interesting operation is the slicing of 
the model based on given slicing criteria. As an example, 
the diagram excerpt shown in Figure 11 shows a small 
part of an ISA subsystem, sliced against a set of traces. 
The traces have been gathered by performing selected use 
cases on instrumented software. The traces, presented as 
UML sequence diagrams, have been transformed into a 

class diagram, which in turn is used as the slicing 
criterion. When accompanied with suitable set of 
abstraction and filtering operations, the architect can 
perform various interesting model processing tasks on the 
target model.  

 

Figure 11. Slicing a subsystem against traces 

Examples of interesting operations include slicing of the 
model based on given slicing criteria (e.g. a subsystem, 
an OCL expression, sequence diagrams). 

7 RELATED WORK 
Some techniques and approaches that combine bottom-up 
and top-down reverse engineering approaches have been 
developed. In [MuN97] Murphy and Notkin discuss the 
software Reflextion Model (RM) technique and its 
application. In this technique, a high-level model is first 
defined and presented using a special kind of a directed 
graph. In our approach, we use UML notation for making 
it easier to map the approach with forward engineering 
activities. In the RM technique, a model is extracted of 
the source, a mapping describing how entities in the 
source and high-level models relate is constructed, and 
the two models are compared using a set of computation 
tools. In our approach, the mapping between the source 
and UML models is guided by the profile descriptions 
and existing design-level models. As in the RM 
technique, the mapping is mostly constructed manually. 
The comparison of the extracted UML models with the 
existing models (e.g., previous versions) and profiles is 
carried out using an extensible set of UML model 
operations built on the top of xUMLi platform. Both our 
approach and the RM technique are iterative allowing 
refinements of the models constructed. In addition, we 
believe that the software analysis techniques are highly 
influenced by the domain in question and therefore in our 
approach the reverse engineering and model analysis 
subprocesses are also refined along the iterations. 

In ARES [Gal95], informal domain knowledge, domain 
standards, and coding guidelines are combined with 
information derived from source code to support software 



 

architecture recovery. The architecture of the subject 
system is first categorized on a coarse level, similarly to 
the categorization of difference architectural styles 
[Sha95]. This categorization is then used to define what 
concepts are looked for from the code. The information 
on the different releases of the subject software system is 
stored in a database. In our approach, the domain 
knowledge and guidelines are defined using UML 
profiles. We currently reverse engineer the UML models 
and compare it with the previous version or with the 
forward engineered (original) model. Relevant 
architectural information is stored in a relational database. 
A Web interface and other visualization techniques are 
used to provide an easy access to it. 

8 DISCUSSION 
UML has been widely used for designing and describing 
software models. However, effective approaches and tool 
support for UML-based architecture modeling has been 
lacking [Mea02]. Correspondingly, UML has been used, 
to some extent, in reverse engineering, but these tools do 
not really support the construction of architectural 
models. Instead, they are typically limited to reverse 
engineering class diagrams [Kea02]. 

In this paper we proposed an approach to software 
architecture maintenance and showed how it has been 
adopted for maintaining a large-scale product platform 
architecture and real-life product-line products built on 
top of this platform. The development of the approach has 
been driven by the practical needs in industry. Experience 
suggests that maintenance processes are strongly 
dependent on the domain they are applied to. In our 
approach, the flexibility needed is gained by using 
architectural profiles. The profiles provide a powerful 
means to define the domain-dependent architectural styles 
and rules that guide the reverse engineering and model 
analysis subprocesses. We have further aimed at a 
flexible tool environment, customizable and adoptable for 
different domains. For instance, the profiles also 
influence the model validation rules, model manipulation 
methods, and reverse engineering methods. Therefore, the 
tools used in this environment are designed and 
implemented to be customizable and modifiable, and new 
tools can be conveniently integrated in the environment 
[Rea04]. 
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