
UML-based Reverse Engineering and Model Analysis Approaches for Software
Architecture Maintenance

Claudio Riva1, Petri Selonen2, Tarja Systä2, Jianli Xu1

1Nokia Research Center

Software Technology Laboratory
{claudio.riva | jianli.xu}@nokia.com

2Tampere University of Technology

Institute of Software Systems
{petri.selonen | tarja.systa}@tut.fi

ABSTRACT
This paper proposes a UML-based software maintenance
process. The process is guided by architectural
descriptions and existing architectural models. The
descriptions are given as variants of UML profiles
describing the styles and rules relevant for a particular
application domain. A reverse engineering subprocess,
combining top-down and bottom-up reverse engineering
activities, aims at constructing the architectural models.
Resulting models are investigated in a model analysis
subprocess. The models are checked against the profiles
to find violations against the given architectural rules
when maintaining and developing the subject system, and
they are further analyzed using a set of UML model
processing operations. The proposed approach is applied
for maintaining a large-scale product platform
architecture and real-life product-line products built on
top of this platform. The model analysis results of the
case study are discussed.

Keywords
Reverse Engineering, Software Architecture, Architecture
Maintenance, Architecture Analysis, UML

1 INTRODUCTION
The Unified Modeling Language (UML) [OMG02] has
established itself in software industry for describing
software models. This paper discusses a UML-based
software maintenance process relying on two
subprocesses: reverse engineering and model analysis.
The former combines a top-down reverse engineering
technique with traditional bottom-up reverse engineering
activities, while the latter utilizes a set of UML model
processing techniques for analyzing the architecture
models. During the evolution of the software architecture,
the whole procedure is iterated for individual releases of
the subject system. The main driver of the presented work
has been to enable the software architects to analyze the
structural dependencies that exist in large software
systems. Those dependencies are often unclear, hidden in
the details of the implementation or just not shown at the
right level of abstraction. Hence, the typical search to
extract “the big picture” of the system can bring up a
clear understanding of its major components and their

interactions.

To customize UML for a certain domain or for certain
(e.g. company-specific) design or architecting policies,
UML profiles [OMG, Sec. 2.14] can be used. A profile is
essentially an extension the UML specification using its
built-in extension mechanisms. We define an
architectural profile [SeX03] as a UML profile variant
which presents a set of architectural rules and specifies a
subset of UML models that can be considered legal in a
particular context. In essence, the architectural profiles
describe an architecture modeling language that the
designer must follow.

In the reverse engineering subprocess, finding the
mappings between the source code and the UML
architectural descriptions requires several steps. The
subprocess is guided by the architectural profile
descriptions constructed for a product line, product
family, or product platform under investigation: the
profile defines what concepts are architecturally relevant
and to be recovered from the implementation. When
maintaining software architectures, changes in the source
code during the evolution of the software need to be
mapped and reflected against the architectural
descriptions and rules. These rules and profile
descriptions as well as the pre-existing software
architecture models can be used to guide the reverse
engineering process, especially when constructing
abstract and design level UML models from the extracted
low-level data. Still, the construction of UML models
from the source code is far from straightforward, even if
an object-oriented programming language has been used.

Because of the differences in concepts at the design and
implementation levels, interpretations are necessary even
for the extraction of class diagrams from the source code.
Currently available CASE-tools supporting UML-based
reverse engineering are rarely able to produce other
models besides class diagrams [Kea02]. Consequently,
we use a middle model, containing the detailed and
accurate information of the subject software, from which
the UML views are constructed. This way, the reverse
engineer has a better control on the model construction

Domain

detailed

top-down

abstract

non-
UML

Architectural
Profiles

Architectural
Views

Model
Analysis
Process

Implementation
Model

Reverse
Engineering

Process top-down

conform toimprove improve

bottom-up

UML

 Figure 1. Overview on the maintenance process

process. The graph-based middle model further allows the
composition of alternative views and abstractions.

In the model analysis subprocess, the models are checked
against the profiles to indicate whether the given
architectural rules have been followed when maintaining
and further developing the subject system. Also, various
UML model processing operations can be defined and
used e.g. to build alternative abstractions and to compare
different versions of the software architecture and to find
out how it has been evolved. The operations can be used
e.g. to compare the original design-level models against
the models reverse engineered from the source code. We
have developed a technique and a tool for validating a
given UML model against the architectural profiles
[SeX03]. The architectural profiles should be followed
correctly in the architecture design and maintenance
process in order to guarantee that the resulting
architecture design has necessary properties, or lacks
undesirable ones. The used model processing operations
have been implemented on top of a CASE-tool
independent model processing platform xUMLi
[Aea02][PeS04].

This paper introduces the architecture maintenance
approach and gives examples of its application for
maintaining a large-scale product platform architecture
and real-life product-line products built on top of this
platform.

2 OVERVIEW OF THE APPROACH
Usually a system under development can be seen at
several levels of abstraction: starting from the most
abstract level, we can have requirements, architecture
models, design models, and finally implementation at the
most detailed level. In addition, even new systems built
from scratch typically rely on, or are subject to, existing
architectures and platform or domain specific rules and
restrictions. A system is typically not static but evolving
over time due to e.g. changing requirements, changing

technologies, bug fixes, adding of features, and re-
engineering. To be able to maintain a software system, a
necessary level of design documentation must usually be
kept up and maintained in synch with the actual
implementation model. When there are changes in the
system, these changes should propagate through the
whole model hierarchy. This is essential to produce a
well-maintained model.

With a single system, the synchronization of the model
hierarchy can be done by hand, though this is often
tedious and error-prone. However, when the focus is
switched onto product lines, product families, and
product platforms, the importance of the models
dramatically increases, as does the effort involved in
maintaining them. Changes in product platforms affect all
its products depending on the particular architecture.
When several products and several design teams are
involved, the need to be able to specify domain, product-
line, and product platform specific conventions, rules, and
restrictions grows more important.

Figure 1 illustrates the overall maintenance process
described in this paper. The two enclosed subprocesses
are a reverse engineering process (RE-process) and a
model analysis process (MA-process). These processes
involve the tools, techniques, and also design decisions
made by participating designers. The scheme also
includes three models. The implementation model,
typically represented as (nested) graphs in reverse
engineering tools, includes both the source code and more
abstract representations in a suitable format. The
architectural views are architecture representations and
analysis views in UML. The architectural profiles
describe the domain-specific concepts and architecture
conventions, styles, restrictions, and rules as a set of
UML profiles.

The RE-process combines bottom-up and top-down
reverse engineering approaches. The existing

architectural views (if any) and architectural profiles
guide the subprocess from a top level. The
implementation-level artifacts are gradually abstracted
and mapped to the high-level concepts. The result is a
new (set of) architectural views, translated into UML.
The MA-process analyzes these architectural views
against architectural view profiles and existing
architectural views, either against previous versions or
reference models (e.g. forward engineering models,
reference architectures).

Both subprocesses build new models based on existing
ones. In addition, human interaction is involved
throughout the whole maintenance process and affects the
included subprocesses. Consequently, the maintenance
process is not static but incremental and iterative: new
versions of architectural view profiles, architectural
views, and implementation models are produced
whenever necessary. Both involved processes are self-
improving: during each iteration cycle, they are evaluated
against the new and existing models and modified
accordingly if necessary.

As a typical usage scenario for the process, consider a
situation where a (potentially outdated) forward
engineered architecture model already exists. An initial
description of the domain is mapped to a first version of
an architectural profile. The process goes as follows:

1. The RE-process takes the existing forward
engineered model, together with the architectural
profiles, as its top-down level input. Guided by
them, the bottom-up reverse engineering is started.
After generating a set of intermediate model
representations, each typically raising the level of
abstraction, a suitable level of abstraction is reached.

2. The architecture model generated in step 1 is
mapped into UML views to be used by the MA-
process.

3. The MA-process validates the architecture model
generated in step 2 against the architectural view
profiles and reports the incidents potentially
violating the domain-specific conventions and
selected architectural styles and constraints. The
MA-process can compare the new set of
architectural views against the previously generated
ones.

4. The results obtained in step 3 and additional view
generation (i.e., merging, slicing, synthesis) are
analyzed and necessary steps are taken, either to
improve the MA-process, the RE-process, or the
architecture model itself.

5. The changes introduced in step 4 are mapped back

to the implementation model.

6. The changes in the implementation model, the
architectural profiles, and the architecture models
are, in turn, used for modifying RE- and MA-
processes.

The cycle can begin again from step 1.

The process described in Figure 1 does not in any way
dictate in which order the overall process is executed, nor
does it take any position on how the subprocesses are
constructed: what tools should be used, what the models
should be like, etc. Experience suggests that the process,
subprocesses, and related techniques should be – and
must be – customized for every domain they are applied
to. A process execution cycle can modify several models
simultaneously. Since the description of the processes can
also be seen as models, the models themselves are subject
to changes and improvements.

3 APPLYING ARCHITECTURAL PROFILES
Architectural profiles represent the common architecture
modeling language shared by both the RE- and MA-
processes, usually in the form of a conceptual profile and
a group of view profiles [SeX03]. The conceptual profile
defines the fundamental concepts (types) that are used
throughout the entire architecture design and description,
and the view profiles specify the concepts and rules that
are specific only to this architectural view. We define a
view profile for each selected architectural concern of the
architecture descriptions. Together the architectural
profiles are put in a profile hierarchy where all the view
profiles depend on the conceptual profile. A view profile
may depend on other view profiles as well, depending on
its properties.

Next, we present a profile hierarchy, corresponding
profiles, and the process of establishing the two. While
they are tied to a particular case study, they should go on
to illustrate the adopted profile-based approach. The case
study, concerning a product-line of mobile terminal
software built on top of a common platform, is discussed
in more detail Section 6.

The original software architecture of the product platform
was described in a platform reference architecture
document and an architecture design model. Basic UML
notations, mainly class diagrams, were used for
describing the reference architecture and the logical view
model [RXM01]. The platform reference architecture
document is a textual document with some
complementary UML diagrams. The reference
architecture document describes the architecture style
used, namely a client-server style, the types of all the
architectural elements and their relationships, and the

interaction patterns between them. To use our tools for
automating the architectural model validation process, we
transformed the reference architecture descriptions into
UML architectural profiles.

Conceptual Profile

Package Structure
View Profile

<<import>>

Layer View Profile<<import>>

<<import>>

Figure 2. Profile structure

Figure 2 shows the profile structure of the mobile
terminal software architecture used in our case study.
There are two view profiles: Package Structure View
profile and Layer View profile. All profiles have two
parts, a stereotype definition part that defines the types of
architectural elements with UML stereotypes, and a
constraint part that specifies the allowed relationship
among those types.

Conceptual Profile
The Conceptual Profile describes the conceptual model
that specifies the architectural style and the validation
rules with class diagrams. Figures 3 and 4 show examples
of the stereotype definition for the mobile terminal
software system model. Figure 3 defines four logical
component (or design components in contrast to
implementation components): Server, Application,
Delegate, CommonApp. Figure 4 defines two logical
dependency types: message and invocation.

Class
<<metaclass>>

Application
<<stereotype>>

Server
<<stereotype>>

Logical Component
<<stereotype>>

CommonApp
<<stereotype>>

Delegate
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

GeneralizableElement
<<metaclass>>

<<stereotype>>

<<stereotype>>

Figure 3. Stereotype definitions for components in the
conceptual profile

Figure 5 presents one example of the constraints in the
conceptual profile describing the allowed relationships
between the architectural concepts. The profile essentially

specifies the interfaces, their realizers, and the classifiers
depending on them. The constraints of the profile must be
satisfied in the architecture model. Figure 5 effectively
defines the basic architectural style of the software
system: a client-server system with message-passing
interactions.

Dependency
<<metaclass>>

message
<<stereotype>>

invocation
<<stereotype>>

Logical Dependency
<<stereotype>>

<<stereotype>><<stereotype>>

<<stereotype>>

Figure 4. Stereotype definitions for dependencies in
the conceptual profile

Package Structure View profile
The Package Structure View profile defines how the
system is decomposed into a hierarchy of namespaces
(subsystems, packages) and which namespaces are
allowed to reside under each other. Figure 6 shows a
simplified example of the profile: on the left side the
package types are defined through stereotypes and, on the
right side we define the constraints of the system
decomposition structure. ISA Packages are the highest-
level packages and can contain Sub-Packages. Sub-
Packages can contain other Sub-Packages, or Logical
Components. This package hierarchy mainly describes a
functional decomposition of the system, but it also serves
as a means of organizing and managing both the design
and implementation artifacts.

... A Server
<<Server>>

... An Application
<<Application>>

... A Server Interface
<<Service IF>>

... A Delegate App
<<Delegate>>

... A Delegate IF
<<Delegate IF>>

... A Common App
<<CommonApp>>

... A CommonApp IF
<<Service IF>>

... Another Server
<<Server>>

... Another Common App
<<CommonApp>>

<<message>>

<<message>> <<message>>

<<message>>

<<invocation>>

<<message>>

<<invocation>>

<<message>>

Figure 5. Constraint definition for the conceptual profile.

Layer View Profile
The layer view profile introduces a conceptual
decomposition of the system. The stereotype definition

part in Figure 7 introduces the concept of a layer and
three specific layer types. The constraint profile specifies
how to a layer can be composed of the architecture
concepts defined in other profiles and what dependencies
are allowed between the layers (left-hand and right-hand
side of Figure 8, respectively), effectively leading to a
three-layer architecture style. After architecture model
elements are mapped to the presented concepts, the model
can be recomposed and the relationships checked. We can
also define other conceptual views by giving alternative
system decomposition, for example, to define an
organizational view showing the development teams and
their relationships based on the components they are in
charge of.

Subsystem
<<metaclass>>

ISA Package
<<stereotype>>

<<stereotype>>

Sub Package
<<stereotype>>

<<stereotype>>

... A Logical Comp
<<Logical Component>>

... Another Sub Package
<<Sub Package>>

... A Sub Package
<<Sub Package>>

0..*

1

0..*

1

0..*1 0..*1

... A Top-level Package
<<ISA Package>>

1..*

1

1..*

1

Figure 6. Example of package structure view profile

Subsystem
<<metaclass>>

Arch Layer
<<stereotype>>

UI&App Layer
<<stereotype>>

Service&Resource Layer
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

HW Control Layer
<<stereotype>>

<<stereotype>>

Figure 7. Layer definition in the layer view profile

4 REVERSE ENGINEERING PROCESS
The goal of this activity is to recover the architectural
model from the implementation of the products and to
construct the architectural views. The process is based on
a series of transformations that abstract the facts extracted
from the implementation in the UML model. Starting
from our previous work [Riv00], we have elaborated a
robust architecture reconstruction process based on the
selection of the views to recover [Deur04].

The target view of the reconstruction is the Component

View. The view describes the logical components and
their logical dependencies as defined in the Conceptual
Profile, and their hierarchical organization as defined in
the Package Structure View profile. The component view
also calculates the high-level dependencies among the
packages. The Conceptual Profile defines what concepts
are architecturally relevant for the product family and
must be recovered from the implementation. In this way,
the reconstruction process is completely driven by the
concepts in the profile.

... A Sub-Package
(from Package Structu...)

<<Sub-Package>>

... A Layer
<<Arch Layer>>

1..*

1

1..*

1

... An UI&App Layer
<<UI&App Layer>>

... A Service&Resource Layer
<<Service&Resource Layer>>

... A HW Control Layer
<<HW Control Layer>>

<<invocation>>

<<Logical Dependency>>

Figure 8. Construction and dependency rules of layers

The process consists of the following tasks: (1) mapping
the logical concepts to the implementation, (2) gathering
the data into a component inventory, (3) constructing the
architectural views, and (4) representing the views in
UML. The process is tailored to our particular product
family and it can be applied on all the various products.

Mapping the logical concepts to the implementation
The first task is to identify how the entities in the
Conceptual Profile are mapped to the implementation.
The logical components of Figure 3 are runtime elements
and become active they register to the communication
infrastructure. Discussions with the architects identified
the practical rules for identifying the components in the
source code: the source files of the component are
typically, but not necessarily, located in one single
directory and for each component there is a runtime
configuration file. There is no easy way to map the files
to the component and, thus, we manually mapped
approximately 20.000 files to the logical components.
The mapping table was created by analyzing the build
process and with the help of the domain knowledge of the
architects.

As shown in Figure 4, there are two types of
dependencies: asynchronous messages and function
invocations. Messages are sent between components
through the communication infrastructure. In the source
code, we can identify a message passing from particular
code patterns that are used to interact with the
communication library. The runtime recipient of the

message is statically detectable in most of the cases.
Function invocations are made through macros provided
by the programming language (a variant of C).

Data gathering and the component inventory
The second task is to gather all the relevant information
from implementation and to store it in a component
inventory (a relational database). The analysis of the
source files is completely automated and carried out by a
Python script that detects various patterns defined by
regular expressions. The output of the analysis is a
relational dataset that is directly stored in the database.
The information about the hierarchical organization of the
components have been prepared together with the
architects and stored in the repository. The dependencies
are used to calculate the high-level dependencies between
the packages and stored in the repository as well. The
final component inventory contains a list of all the
recovered components, (with information about the type,
the owner, the runtime task, the source files), the package
structure, and the dependencies. Since our goal is to
create an architectural view of the overall platform of the
family, we analyze the single products and merge the
final results.

Constructing the architectural views
From the component inventory we can generate various
architectural views about the family platform: component
view (the logical components and the logical
relationships), task view (task allocation and inter-task
communication), development view (organization of the
source code and their dependencies), deployment view
(physical location of components in the processing units),
feature view (run-time implementation of a feature), and
organizational view (organization of the development
activities like projects, programs, sites). The construction
of the view is done by querying the basic data from the
repository and by applying several rules specified with
relational algebra. In the case of the component view, we
query the logical components, packages and logical
dependencies.

The result can be typically visualized as a hierarchical
directed graph where the nodes represent packages and
components and the arcs represent logical dependencies.
We can export the graphs in various formats: hyperlinked
pages, SVG, Rigi1 and other visualization tools.

Transforming the views into UML

The final task of the reverse engineering activity is to
transform the component view to the UML language. We
map the logical packages to UML stereotyped packages

1 Rigi: http://www.rigi.csc.uvic.ca/

and the logical components to UML stereotyped classes.
The logical dependencies are mapped to UML
stereotyped dependencies. Figure 9 shows an example of
the reverse engineered component view in UML format.
It shows the top-level packages and the high-level
dependencies.

Figure 9. The Package Structure View in UML

5 MODEL ANALYSIS PROCESS
The model analysis process is supported by tools and
techniques for analyzing and processing the architecture
model produced by the RE-process. In the following,
some of the tools and techniques are explained.

Architecture validation against profiles
The UML architectural profiles are used as the
mechanism for introducing lightweight extensions to the
UML metamodel, describing domain-specific
architectural conventions, rules, and constraints. From a
practical viewpoint, the profiles can be seen as visual
shortcuts representing examples of allowed architectural
constructs. Their interpretation is given by evaluating
them in a posteriori fashion by a selected set of
conformance rules. Together, the set of profiles and the
rule configuration define an architecture language. The
architecture model is validated against these profiles and
the found non-conformant incidents are reported. The
approach is discussed in more detail in [SeX03]. The
interpretation of the profiles follows the outline given in
Section 3.

The incidents are interpreted by the architects and acted
upon accordingly. If the violations are premeditated due
to e.g. performance issues, no action needs to be taken. If
the incidents are real architectural violations, the
corresponding changes must be made, both to the
architecture model in case of an existing forward or
round-trip engineering process, and to the implementation
model. These changes, in turn, are reflected to the reverse
engineering process. If the incidents are found non-
relevant, the profiles and/or validation configuration must
be modified. The tool, artDECO [SeX03][PeS04]

together with a suitable validation configuration performs
the validation of the architectural views against the
architectural profiles in practice.

Model processing operations in the analysis process
In addition to the profile-based architecture validation
process, a set of model processing operations [SKS03] can
are used for analyzing and reasoning about the
architectural views. The model processing operations
(e.g. transformations, set operations, abstractions) can be
used for generating new transient views to the system
under observation. Ideally, they result in increased
program comprehension, based on which additional
decisions on the development of the system can be done.
The model processing operations are built on top xUMLi.

A particularly interesting category of model processing
operations in the context of this work are set operations
[Sel03][Ven04]. The set operations can be used, among
other things, for comparing different model versions, and
for performing model slicing based on a given criterion.
If a later architecture model version is compared against
an earlier one, the differences (i.e., added, removed, and
migrated parts) can be focused on when estimating the
impact of the changes. The same applies even if the
second model is a forward engineering model or a
reference architecture description, given that a
correspondence relationship between them can be
established. The deviations can then be seen as potential
architecture violations, analogously to the artDECO
incidents. The role of the set operations and model
comparison is further increased, should there exists a
forward engineering model to be simultaneously
maintained. A similar technique has been applied on
comparing the reverse engineering capabilities of UML-
based CASE-tools [Kea02].

Other categories of model processing operations can be
used as well. Projection operations can be used for
generating dedicated slices of the architectural views.
Transformation operations can be used for migrating
information: for example, if the reverse engineering
process is able to produce complimentary execution
traces in the form of UML sequence diagrams, these
diagrams, when transformed into structural
representations [SKS03], can be used as a slicing
criterion for slicing the original model using the set
operations. Model processing operations and their usage
has been addressed e.g. in [SKS03][PeS01].

6 THE MAINTENANCE PROCESS IN
PRACTICE: MODEL ANALYSIS IN THE ISA
CASE STUDY

The target system for the maintenance process, hereafter
referred to as ISA, consists of a large-scale product

platform architecture and real-life product-line products
built on top of this platform. The domain is embedded
software for mobile products. Roughly, the target
architecture model has around 150 subsystems, 1000
components, and 15000 dependencies.

Model Analysis
Process

Reverse
Engineering

Process

R-model n
(Reconstructed

Architecture Model
of Release n)

R-model n-1 or R-
model of any earlier

release

Implementation Model
of Release n-1

Implementation Model
of Release n

Implementation Model
of Release n+1

Design and
Implementation

Process

Platform Architecture
Profiles

F-model (Forward
Engineered Platform
Architecture Model)

Analysis
Results

feedback

abstract

detailed

Platform

Product Releases

Product Line Life-time

UML

non-UML

 Figure 10. Maintenance process for the ISA platform

In the ISA case study, a forward engineered model (F-
model) and profile platform architectural profiles are used
to guide the construction of reverse engineered model (R-
model) for further analysis as described earlier. In later
maintenance activities, new R-models are constructed and
analyzed against the profiles and previous versions of the
R-models. Figure 10 shows this maintenance process,
which shows an instance of the architecture maintenance
process depicted in Figure 1 for the ISA case study.

Profile-based architecture validation
The architectural profiles for the target models have been
described in Section 3. Table 1 lists the architectural
concerns, together with their UML interpretations, that
the artDECO tool has been used for validating.

Table 1. UML interpretations of architectural
concerns

Architectural concern UML interpretation

Validate that only the
architectural concepts
allowed by the domain are
being used

Check that all classes,
packages, and dependencies
have stereotypes defined in
the architectural profiles

Validate that only allowed
relationships between the
architectural concepts are
being used

Check that all used
dependencies have been
defined in the architectural
profiles

Validate that the interfaces
are correctly realized

Check that the interfaces have
been properly defined in the
architectural profiles and that
there exists proper realizers
for them

Validate that the number of
relationships between
architectural concepts are
correct

Check that the number of
associations between concepts
conforms to the multiplicity
definitions in the architectural
profiles

Validate that the physical
composition hierarchy of the
architecture conforms to the
domain-specific conventions
(i.e., Top-Level packages –
Subpackages – Components)

Check that the package
containment hierarchy and
owned classes follow the
parent – child relationships
defined in the packaging
profiles

Validate that the system
conforms to a three-layer
architecture style

Check that all the
dependencies between classes
belonging layers defined in
the layering profiles (realized
as namespace hierarchies) are
directed from a higher-level
layer to a lower-level layer

The F- model has been synthesized from existing non-
UML architectural descriptions (e.g. databases and Excel
sheets). While it provides an interesting starting point, we
plan to reconstruct the platform architecture model after
we gain enough experience from the application of RE-
process. The validation process reported around 100
stereotype violations, 1000 invalid interface
dependencies, and 100 illegal dependencies between
layers. The latter were found to be relevant problems in
the F-model, reflecting the fact that the system was not
originally designed to follow a layered architecture style,
and most of the dependencies were introduced without
following the layering principles.

Most of the other violations were related to stereotype
mismatches, but the results still revealed over 100 real
violations. Due to the significant number of violations for
a design model, a further investigation was performed.
The F-model turned out not to be strictly a design model.
Many component-level details, especially their
dependencies, actually stem from the architects’
impressions of the implementation, and reflected many ad
hoc solutions in the implementation. It became evident
that the architects tried to close the gap between the
designed and implemented architecture before the RE-
process was applied. The effort obviously failed but
resulted in an architecture model residing between the

two worlds.

The R-model was produced by the RE-process described
in Section 4. After analyzing the initial validation results,
improving the RE-process and the MA-process, and
refactoring the profiles, the reported incidents included
about 300 stereotype violations, 5000 illegal
dependencies, and 650 layering violations. All stereotype-
related incidents resulted from the usage of architectural
types known to be invalid a priori, i.e., components and
elements the RE-process was unable to map to existing
architectural concept.

Of the reported dependencies, around 3700 of the
incidents are genuine, i.e., not involving an element
whose stereotype is reported invalid. Obviously, many of
the violations originated from the quick’n’dirty solutions
(e.g. during bug fixing) under the time-to-market
pressure. But the initial findings from the investigation
still revealed at least the following sources of the
problems both in the implementation and the MA- and
RE-processes:

1. Evolving and incomplete profiles. When new
stereotypes were introduced, the constraints of the
dependencies regarding them could not be completely
specified, and some of them were even left open. The
dependencies (usually legal ones) that were not covered
by the profiles were reported illegal by the artDECO
tool.

2. Components having inappropriate stereotypes. Some
components with a certain stereotype actually played
different roles than what had been defined by the
stereotype. This discovery shows that on one hand the
hints or rules used by the RE-process to recognize the
component types should be improved, and on the other
hand the design and implementation of those
components should be reviewed.

3. Sharing of code in the same development team. Many
illegal dependencies occurred between the components
that were implemented by the same team or several
closely cooperating groups working on the same
feature or feature set. As an example, a component can
share a function from another component with a
function call. This can easily create an illegal
dependency regarding to the design principles, simply
because the developers can be physically located near
each other or the components may even originate from
the same developer.

4. Dependencies introduced due to performance and
other non-functional requirements. Some of the
dependencies short-cutting across layers involved top
layer components directly invoking the functions of the

bottom layer components by-passing the middle layer.
The dependencies of this category are special and
considered to be allowed in a real-time and embedded
system. However, they must be monitored and
controlled closely within a very limited scale.

5. Inappropriate function allocation. Our investigation
showed that several components controlling global data
had been placed in the top layer. Most of the
components in the lower layers depended on them, and
this was the source of most of the layering violations.
The investigation showed that two of them had the
client stereotype and one had an unmatchable
stereotype. Just these three components were able to
cause over 1000 illegal dependencies.

These findings gave valuable feedback for improving the
architecture design and implementation, maintenance of
the architectural profiles, and the MA- and RE-processes.

Applying UML model processing operations
When a new architecture model is generated, it is often
useful to compare it to the previous architecture model
versions. In the context of this work, the comparison is
done with the set operations. The commonalities and
differences between the models are detected and
presented to the user both as a (set of) UML diagram(s)
and as a summary report, focusing attention of the
designer to the variations between the two models. The
model against which the new model is compared can
either be a previous version of the architecture model, a
reference architecture model, or a forward engineering
model. The results can be further processed using the
other available model operations. Some of the possible
changes in the architecture models include addition,
removal, change, and migration of components and
subsystems, and addition, removal, and change of
dependencies.

The application of set operations requires mechanisms for
detecting the correspondence of model elements
belonging to the two input models. With the ISA case
study, this is straightforward: the names of subsystems
and components have a global mapping and are thus
unique. The dependencies are then identified through
their end elements and types. As an example, an
interesting subsystem was selected and two consecutive
versions were compared.

Another particularly interesting operation is the slicing of
the model based on given slicing criteria. As an example,
the diagram excerpt shown in Figure 11 shows a small
part of an ISA subsystem, sliced against a set of traces.
The traces have been gathered by performing selected use
cases on instrumented software. The traces, presented as
UML sequence diagrams, have been transformed into a

class diagram, which in turn is used as the slicing
criterion. When accompanied with suitable set of
abstraction and filtering operations, the architect can
perform various interesting model processing tasks on the
target model.

Figure 11. Slicing a subsystem against traces

Examples of interesting operations include slicing of the
model based on given slicing criteria (e.g. a subsystem,
an OCL expression, sequence diagrams).

7 RELATED WORK
Some techniques and approaches that combine bottom-up
and top-down reverse engineering approaches have been
developed. In [MuN97] Murphy and Notkin discuss the
software Reflextion Model (RM) technique and its
application. In this technique, a high-level model is first
defined and presented using a special kind of a directed
graph. In our approach, we use UML notation for making
it easier to map the approach with forward engineering
activities. In the RM technique, a model is extracted of
the source, a mapping describing how entities in the
source and high-level models relate is constructed, and
the two models are compared using a set of computation
tools. In our approach, the mapping between the source
and UML models is guided by the profile descriptions
and existing design-level models. As in the RM
technique, the mapping is mostly constructed manually.
The comparison of the extracted UML models with the
existing models (e.g., previous versions) and profiles is
carried out using an extensible set of UML model
operations built on the top of xUMLi platform. Both our
approach and the RM technique are iterative allowing
refinements of the models constructed. In addition, we
believe that the software analysis techniques are highly
influenced by the domain in question and therefore in our
approach the reverse engineering and model analysis
subprocesses are also refined along the iterations.

In ARES [Gal95], informal domain knowledge, domain
standards, and coding guidelines are combined with
information derived from source code to support software

architecture recovery. The architecture of the subject
system is first categorized on a coarse level, similarly to
the categorization of difference architectural styles
[Sha95]. This categorization is then used to define what
concepts are looked for from the code. The information
on the different releases of the subject software system is
stored in a database. In our approach, the domain
knowledge and guidelines are defined using UML
profiles. We currently reverse engineer the UML models
and compare it with the previous version or with the
forward engineered (original) model. Relevant
architectural information is stored in a relational database.
A Web interface and other visualization techniques are
used to provide an easy access to it.

8 DISCUSSION
UML has been widely used for designing and describing
software models. However, effective approaches and tool
support for UML-based architecture modeling has been
lacking [Mea02]. Correspondingly, UML has been used,
to some extent, in reverse engineering, but these tools do
not really support the construction of architectural
models. Instead, they are typically limited to reverse
engineering class diagrams [Kea02].

In this paper we proposed an approach to software
architecture maintenance and showed how it has been
adopted for maintaining a large-scale product platform
architecture and real-life product-line products built on
top of this platform. The development of the approach has
been driven by the practical needs in industry. Experience
suggests that maintenance processes are strongly
dependent on the domain they are applied to. In our
approach, the flexibility needed is gained by using
architectural profiles. The profiles provide a powerful
means to define the domain-dependent architectural styles
and rules that guide the reverse engineering and model
analysis subprocesses. We have further aimed at a
flexible tool environment, customizable and adoptable for
different domains. For instance, the profiles also
influence the model validation rules, model manipulation
methods, and reverse engineering methods. Therefore, the
tools used in this environment are designed and
implemented to be customizable and modifiable, and new
tools can be conveniently integrated in the environment
[Rea04].

ACKNOWLEDGEMENTS
The authors wish to thank Nokia, Jani Airaksinen for the
implementation of the artDECO tool kit, Jan Salvador van
der Ven for his work on the set operations. The work of
Claudio Riva and Jianli Xu are also funded by
FAMILIES (Eureka Σ! 2023 Programme, ITEA project
ip02009).

REFERENCES
[Deur04] A. van Deursen, C. Hofmeister, R. Koschke, L.
Moonen and C. Riva. Symphony: View-Driven Software
Architecture Reconstruction. In Proc. of the IEEE/IFIP Working
Conference on Software Architecture (WICSA'04). IEEE
Computer Society, 2004.

[Aea02] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen,
P. Selonen, M. Siikarla, and T. Systä, "xUMLi: Towards a Tool-
Independent UML Processing Platform", In K. Østerbye (Ed.),
The Proc. of NWPER , 2002, pp. 1-15.

[Gall95] H. Gall, R. Klösch, and R. Mittermeir, Object-Oriented
Re-Architecting, In Proc. of ESEC 1995, LNCS, Springer-
Verlag, September 1995, pp. 499-519.

[Kea02] R. Kollmann, P. Selonen, E.Stroulia, T. Systä, and A.
Zündorf, A Study on the Current State of the Art in Tool-
Supporter UML-Based Static Reverse Engineering, In Proc. of
WCRE 2002, pp. 22-33.

[Mea02] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles and
J.E. Robbins, Modeling Software Architecture in the Unified
Modeling Language, ACM Transactions on Software
Engineering and Methodology, Vol 11, No 1, January 2002.

[MuN97] G.C. Murphy and D. Notkin, Reengineering with
Reflextion Models: A Case Study, IEEE Software, 1997.

[PeS04] J. Peltonen, and P. Selonen, “An Approach and a
Platform for Building UML Model Processing Tools”, In Proc.
of ICSE 2004 Workshop WoDiSEE2004, 2004, pp. 51-57.

[Riv00] Riva C., Reverse Architecting: an Industrial Experience
Report, In Proc. of WCRE2000, 2000, pp. 42-51.

[Rea04] C. Riva, P. Selonen, T. Systä, A.-P. Tuovinen, J. Xu ,
and Y. Yang, Establishing a Software Architecting
Environment, In Proc. of WICSA 2004, 2004.

[RXM01] Riva C., Xu J. and Maccari A., Architecting and
Reverse Architecting in UML, In Proc. of ICSE 2001 Workshop
on Describing Software Architecture with UML, 2001.

[OMG02] The Object Management Group, Unified Modeling
Language Specification (Action Semantics) – UML 1.4 with
Action Semantics, Final Adopted Specification, January 2002.
On-line at http://www.omg.org/uml.

[PeS01] J. Peltonen, and P. Selonen, "Processing UML Models
with Visual Scripts", In Proc. of HCC'01, 2001, pp. 264-271.

[SKS03] P. Selonen, K. Koskimies, and M. Sakkinen,
Transformations Between UML Diagrams, Journal of Database
Management, 14(3), Idea Group Publishing, 2003, pp. 37-55.

[SeX03] P. Selonen P and J. Xu, Validating UML Models
Against Architectural Profiles. In Proc. of ESEC 2003, 2003,
pp. 58-67.

[Sha95] M. Shaw, Comparing architectural design styles, IEEE
Software, November 1995, pp. 27-41.

[Ven04] J. van der Ven, An Implementation of Set Operations
on UML Diagrams, M.Sc. thesis, University of Groningen,
Instituut voor Wiskunde en Informatica, 2004.

