
Establishing a Software Architecting Environment

Claudio Riva1, Petri Selonen2, Tarja Systä2, Antti-Pekka Tuovinen1, Jianli Xu1, Yaojin Yang1

1Software Technology Lab, Nokia Research Center
P.O. Box 407, FIN-00045, NOKIA GROUP, Finland

{claudio.riva | antti-pekka.tuovinen | jianli.xu | yaojin.yang}@nokia.com

2Institute of Software Systems, Tampere University of Technology
P.O.Box 553, FIN-33101 Tampere, Finland

{petri.selonen | tarja.systa}@tut.fi

Abstract

We present the work of establishing an integrated

environment that facilitates architecture design,
reconstruction, and maintenance in the entire life cycle
of a software product line. This architecting
environment (ART environment) has been used in
modeling and analysis of both the designed platform
architecture model and the reverse-engineered product
implementation architecture models of different
releases in a big product line of Nokia mobile
terminals. ART environment comprises tools for
architecture model validation, architecture model
analysis and processing, and reverse architecting. The
ART environment fits the current software development
process inside Nokia, and is integrated with the design
and documentation tools that have already been used
by Nokia software architects. UML, after being
customized with UML profiles for architecture design,
is used as the architecture modeling language in ART
environment.

1. Introduction

Software architecture is of vital importance not only
to the quality of the resulting software system but also
to the control and management of the software
development process. Different architecture-centric
approaches have been adopted in industrial software
development; especially in the development of
software product-lines [1][2][3][4]. The growing
importance of architectures implies an essential change
in the general software development paradigm:

software development is becoming architecture-
centric, in contrast to the traditional code-centric view.

Although the architecture-centric development is
getting more and more popular, in practice software
architects are still facing big challenges of applying it
effectively. Rather than concentrating on making
architectural decisions and designs, they have to
struggle with many non-architectural factors. Among
many others, there are two important factors that
prevent the architecture-centric approaches from
playing a more decisive role in product-line software
development. First, there is no universal architecture
description/modeling language (ADL) [5] that can be
used in all the domains. Usually an ADL is either
dedicated only to a specific architecture style or is too
general to model the architectural details of large and
complex systems. Second, there is hardly any adequate
architecting tool support for the daily work of software
architects. In many companies tools like Microsoft
Office are used with some kinds of informal notations
(graphical or textual) for the description and
documentation of software architecture. With such tool
support it is very difficult to analyze, modify and
maintain the architecture descriptions.

Many people now believe UML [6] is the way to go
in software architecture design, because, as a wide-
spectrum standard notation, UML allows the use of the
same notation in both architectural and detailed design,
and it has better tool support comparing with ADLs. It
is relatively easy to proceed from a UML architecture
design to system and component design, where UML
and OO programming paradigm are usually used.
However using UML and UML tools cannot really
solve the two problems mentioned earlier. On one
hand, UML, as a general purpose OO design notation,

lacks appropriate specification concepts at the
architecture level [7][8]. On the other hand, current
UML-based tools lack support for specifying various
architectural rules, for checking the conformance of a
design against architectural conventions, for
constructing new designs according to given
architectural rules, for managing variability supported
by a product-line architecture, for creating
architectural views from design-level models, and for
establishing tracing capabilities between
implementation and architectural models. All these are
crucial tasks in architecture-centric software
development. Without such support, UML-based
architecting tools remain little more than specialized
graphical editors. Both the research from others [7][8]
and our experience from the software development
practices at Nokia [9] suggest that there is an urgent
need for effective approaches and tools to support
architecture modeling with UML.

In order to make UML appropriate for describing
software architecture in our domain, we customized
the UML metamodel with special UML profiles:
architectural profiles. A profile is essentially defined
by extending the specification of the UML metamodel
using UML’s built-in mechanisms. An architectural
profile is an UML profile that presents a set of
architectural rules and specifies a subset of UML
models that can be considered “legal” in a particular
context. We have developed the technique and tool to
validate a given UML model against the architectural
profile [10].

In this paper we describe our work at Nokia in
establishing an integrated UML based architecting
environment – ART environment. ART environment
has been setup as the result of a research project at
Nokia Research Center in cooperation with the
Institute of Software Systems of Tampere University
of Technology. ART environment has been used in the
architecting work of one of the main mobile phone
product lines in Nokia.

The paper is structured as follows. Section 2 gives
the overview of ART environment. From section 3 to
section 5 we present its three main toolsets: section 3
describes the model analysis and processing toolset;
section 4 introduces the reverse architecting toolset
and section 5 presents the model repository and its
Web interface. In section 6 we show how ART
environment has been used in the design and
maintenance of the software architecture of a product
line. Section 7 draws the conclusion of the paper and
discusses some of the future work.

2. Overview of ART Environment

ART environment consists of three main toolsets:
the architecture model analysis and processing toolset,
the reverse-architecting toolset, and the model
repository and its Web interface.

The model analysis and processing toolset works
with UML architecture models including not only the
models created by architects using a UML CASE-tool
(i.e. IBM Rational ROSE1) but also the UML models
generated by the reverse-architecting tools. It allows
the software architects to create the UML architectural
profiles and architectural design models, check
architectural models against the architectural profiles,
generate architectural views at different abstraction
levels and from different viewpoints, and finally
analyze architectural models and views with adequate
UML model operations. The aim of this part is to
provide software architects a complete and consistent
view of the architecture under design or maintenance,
and to help them to make the right architectural
decisions.

The reverse architecting toolset is used by the
software architects to re-engineer or recover the
architectural model from an implementation. A re-
engineered or recovered implementation model of the
architecture shares the same concepts and same model
structure with the designed architectural model, and
can provide the same architectural views at the same
abstraction levels as the design model does. Hence,
the same architectural profiles can be used to check the
recovered architectural models to discover any
violations in the implementation. The comparison of
the recovered model with the designed model can also
reveal architecturally significant changes introduced
during implementation. For a fast evolving product-
line, being able to monitor the changes and keep the
evolution under control is extremely important.

 The model repository and its Web interface
provide an efficient way for managing and retrieving
all the architecture model elements. A model
repository is necessary when one has to maintain the
architectural models of a large number of
implementation releases of a product-line. In ART
environment we use a relational database to store
architectural models. A Web interface to the model
repository provides the easy access to the model
repository to software architects located in different
sites.

Figure 1 gives an overview of all the tools and the
data flows among them.

1IBM Rational Rose Enterprise Edition. On-line at: http://www-
136.ibm.com/developerworks/rational/products/rose

e
im
c
m
m
in
st
A
to
e
a
a
o
in
a
th
a
a
W
o

a
th
to
p
a
a

Synthesised
Components-Relations

Model (UML class
diagrams)

Source Code Files
Binary Files

Archtectural Profiles
(ROSE .mdl files)

Designed
Architecture Models
(ROSE .mdl files)

Source Code Analysis
Tool

Source Code Model -
Entities and Relations

(text files)

Reconstructed Arch.
Model (R-Model) -

Entities and Relations
(text files)

Arch. Model
Transformation Tools

Architecture
Reconstruction Tools

R-Model in UML
(ROSE .mdl files)

R-Model Repository
(relational database)

DBMS (Oracle / MySQL)

Model Repository Web
Interface

IBM/Rational ROSE
Model Editor

UML Processing
Platform - xUMLi

UML Model Operation
and View Generation

Tools

Traces Data from
Product Test (text files)

UML Model Synthesis
Tools

Recovered Scenario
Model (MSC or UML

SED)

HTML Pages with textual
and graphical information

xUMLi Internal UML
Model Representation

Generated Views or
Model Operation Results

(ROSE .mdl files)

Model Validation Results
(.xls, .txt, or .mdl files)

UML Model Validation
Tool - artDECO

data flow

control flow

UML

Other notations

 UML models in XMI
Format

Figure 1. ART Environment overview
ROSE is one of the main user interfaces of ART
nvironment and the tools that handle UML models are

plemented as ROSE add-ins. The software architects
an use ROSE to create, edit or view architectural
odels and profiles, and then invoke the ART UML
odel analysis and processing tools from ROSE. The
ternal model representation is only based on UML
andard and the UML model processing platform of
RT environment is independent of any UML CASE-
ols. Therefore ART environment, in principle, can

asily switch from ROSE to another UML CASE-tool
s its model editing and viewing user interface. The
rchitecture reconstruction tools and the Web interface
f the model repository provide the other two user
terfaces. The first one allows the architects to start

nd control the reverse-architecting process, and view
e intermediate results. The latter one allows the

rchitect to query any information about the
rchitectural models in the repository database using a

eb browser; the results are shown in a textual format
r in different graphical formats.

ART environment is designed to be reconfigurable
nd modifiable. When the environment is deployed in
e development process of different product lines, the
ols can be tailored and re-configured for the specific

roperties of each product line. For example, the rules
nd patterns for extracting models from source code
re different for an OO programming language

implementation than for a C language implementation;
different architectural profiles require different model
validation rules; a product line may decide to use a
different UML CASE-tool than we originally
considered or even does not use any UML CASE-tool.
All these factors should be considered when deploying
the environment to a specific product line.

3. Model Analysis and Processing Toolset

3.1. UML Model Validation Tool

An UML model validation tool, artDECO, is used
for validating architecture views against given profiles.
It is a collection of Python2 components implemented
on top of xUMLi [11], each representing a particular
set of conformance and auxiliary operations [10], and
VISIOME [12] scripts describing configurations of the
conformance operations. The conformance operations
together with a set of architecture profiles effectively
specify an architecture description language for the
selected domain.

An artDECO script uses xUMLi to import the
architectural profiles and views from ROSE, and then
executes the conformance operations one by one, each

2 http://www.python.org

validating the views against the profiles focusing on a
particular validation aspect. The results are reported to
the user, either in the form of an XML error report, or
by providing a visual browser that can be used with
ROSE. Conceptually, the architectural profiles are
interpreted as standard UML profiles, imposed on the
views in a posteriori fashion.

<<metaclass>>
Subsystem

<<stereotype>>
MyClient

<<stereotype>>
MySupplier

<<stereotype>>

<<metaclass>>
Dependency

<<stereotype>>
MyDependency

<<stereotype>><<stereotype>>
<<MyDependency>>

<<MyClient>>
...a MyClient

<<MySupplier>>
...a MySupplier

Figure 2 Example of an architectural profile

As an example of using the UML model processing
capabilities of xUMLi, consider querying for the valid
stereotypes as shown in the left-hand side of Figure 2.
In the framework, offering a UML interface supporting
COM automation and an interpreter for Object
Constraint Language (OCL) [6], the operation is
performed on classifiers as follows [13]:

st = profile.find(\
 "element.oclAsType(Class).clientDependency->exists(cd |" \
 "cd.stereotype.name->includes('stereotype')" \
 "and cd.supplier.stereotype.name->include("metaclass"))")

for cls in model.find("element.oclIsKindOf('Classifier')"):
 for cst in cls.stereotype:
 if len(st.select("element.name = '" + cst.name + "'")==0:
 # handle class with wrong stereotype

The first part of the operation queries for all
properly defined stereotypes in the stereotype
definition profiles, while the latter iterates over all
classifiers in the view and checks whether they have a
valid stereotype.

An example of architecture profiles is shown in
Figure 2. The left-hand side of the figure introduces
three new architectural types: MyClient, MySupplier,
and MyDependency. The right-hand side of the figure
shows a new constraint imposed on the instances of
MyClient and MySupplier: there can only be a
dependency of type MyDependency from a MyClient
to a MySupplier. Further examples of the conformance
operations, validation configurations, and architectural
profiles are given in [10].

Screenshot in Figure 3 shows a part of an artDECO
configuration opened in the VISIOME editor. The
script involves four activities (one auxiliary operation
for filtering the views, two conformance operations,
and an error to XML conversion operation), and two

synchronization bars. The script has two inputs, one
for architectural profiles and one for architectural
views, and an output for the reported incidents.

Figure 3 Example of an artDECO configuration

3.2. UML Model Operation Tool

As a part of the environment, a set of UML model
processing operations [14] is introduced for analyzing
and manipulating the architecture models. A profound
example of a model operation is searching for, and
filtering of, information in given UML models. More
expressive UML model operations usually produce
new UML diagrams on the basis of existing UML
diagrams, or modify the existing ones. Examples of
model operations are transformation operations,
projection operations, and set operations.

A transformation operation takes a (set of) UML
diagram(s) as its input operand and based on the
information implied by this diagram produces a new
UML diagram of another type. A set operation takes
two UML models as its input operands and produces a
new UML model (e.g. merging and slicing of
diagrams). A projection operation produces a new
UML model based on an existing one, the new model
being a projection of the original one (e.g. abstraction
or slicing). Other useful operation categories include
visualization operations (e.g. highlighting, layout) and
user interface operations (e.g. graphical dialogs). A
subset of the abovementioned operations have been
implemented as xUMLi components and used as a part
of the architecture validation process described in this
paper.

In particular, the set operations have been applied
on both comparing consecutive versions of the reverse
engineered architecture models, and comparing reverse
engineered architecture models against forward
engineered ones. The models, stored in ROSE
repositories, are imported into xUMLi platform. The
corresponding concepts are then derived using
information about e.g. names, metaclasses, stereotypes,
container namespaces, and relationship end elements.

The results, namely the common and disjoint parts, are
reported both in a textual format and in ROSE using
summary diagrams and color highlighting.

As part of the model analysis and processing tools,
a set of ROSE scripts (as ROSE add-ins) are developed
to automatically integrate the subsystem models into a
complete and consistent system model in ROSE.
Because there are tens of subsystems and interfaces
and hundreds of components, it is difficult to create by
hand views that would show inter-subsystem
dependencies derived from the component-to-interface
dependencies specified in the subsystem units. There is
a need for these kinds of views when creating platform
architecture descriptions (that show domains larger
than a single subsystem) and when checking that
architectural rules are followed (who is allowed to use
what).

The results created by the scripts are recorded
directly in the model, which facilitates the use of the
information by other ART tools that can use Rose
models as input. The scripts were created as ROSE
scripts due to schedule and resource constraints. We
plan to make a full xUMLi implementation later to
replace the ROSE scripts.

3.3. UML Model Synthesis Tool

Of the model operations described in Section 3.2,
transformation operations can be also seen as model
synthesis operations. They are particularly useful when
used together with the set operations. For instance, to
check whether a given sequence diagram is in
agreement with an architectural model represented as a
class diagram, the sequence diagram can be
transformed into another class diagram, and they can
be compared using the set operations. The reported
differences can then be examined to conclude whether
or not the original sequence diagram implied e.g. non-
existing operations or relationships between
participating classifiers. The transformation simply
maps the classifier roles and messages of the sequence
diagram to classes, associations and operations of a
class diagram. In addition, a collection of heuristics
can be applied, for example, to generate interface
hierarchies, composition relationships, and
multiplicities [15].

3.4. xUMLi – UML Processing Platform

Many UML-based CASE-tools provide APIs
allowing external components to access and even
modify the model data. However, they fall short in
providing stronger support for advanced UML model

processing activities and typically have only limited
support for UML metamodel. To overcome this
problem, xUMLi [11], a CASE-tool independent
software platform has been developed for UML model
processing. It allows users to build arbitrary UML
model operations and to combine them using the
VISIOME scripting mechanism to contruct more
complicated operations, examples of which are given
in Sections 3.1, 3.2 and 3.3.

The platform consists of VISIOME, a UML
specialization layer, and a set of standard components.
In general terms, xUMLi can be seen as a middleware
meant for model processing purposes. The
environment is not dependent of any specific CASE-
tool, but offers a plug-in interface for components that
transfer models between a tool repository and the data
model. It is therefore possible to support several
different CASE-tools or UML model repositories.
Currently xUMLi is integrated with ROSE.

VISIOME scripting engine

UML support

XMI Rose

Export/Import Model operations

...

xUMLi

UMLi

VISIOME Sripts

Figure 4. The layered architecture of xUMLi

The platform can be conceptually understood as a
layered architecture, as depicted in Figure 4. The
lowest layer consists of a scripting engine providing
domain-independent, general data model, and an OCL
interpreter. The second lowest level specializes the
general data model and provides access to UML
models according to the UML metamodel. This layer is
used through a UML interface (UMLi) which serves as
the basic API for xUMLi. Various components have
been implemented on top of xUMLi, including export
and import components for bridging other UML tools
and model processing operations.

UMLi has been implemented using the COM
component model with automation support, enabling
the usage of any language supporting COM
automation (e.g. Python, Visual Basic). This kind of a
general interface has turned out to be a valuable asset
especially for exploratory, research-oriented
implementation of various advanced UML processing
capabilities. In particular, the Python components can
be written on a high conceptual level, without deep
understanding of the underlying implementation.

4. Reverse Architecting Toolset

The reverse architecting toolset provides the latest
architectural information from the implementation of
various products of the family. The goal is to extract
the elements and their dependencies according to the
profile defined. The reconstruction process takes into
account the source code for identifying the low-level
software dependencies and the domain information for
the structural and behavioral aspects [16].

Simplicity, ease of use and modifiability are the
design philosophy of the toolset. The reverse-
engineering data is represented with a relational format
and stored in textual files with RSF (Rigi Standard
Format) 3. We specify the operations on the dataset
with the relational algebra and we use the Python
scripting language for programming the reconstruction
process. Our reconstruction approach also provides
support for combining static and dynamic views of the
recovered architecture models [18].

4.1. Source Code Analysis Tools

The source code analysis tools detect the

architecturally significant elements from the
implementation by searching the source code for
particular code patterns. The tools traverse the code
files and detect the code patterns defined by regular
expressions. The output of the analysis is the source
code model, a relational dataset containing the low-
level system dependencies. The following table shows
an example of the relations in the source code model:

file sendMessage msgType
file call function
file defineMsgEvent msgType
file defineFunction function

The various members of the product family are
parsed by the Python scripts and the results are merged
by concatenating the files. The final result is a super
set of all the low-level dependencies. Depending on
the implementation language of the system, we can
complement the data from the Python scripts with the
other dependencies from other source code analyzers
such as RedHat SourceNavigator4 and Columbus5.

One key aspect is that the meta-model of the tools is
not bound to a particular schema but it can be easily
adapted to the system under analysis in order to extract
those relations that are architecturally relevant.

4.2. Architecture Reconstruction Tools

3 http://www.rigi.csc.uvic.ca/
4 http://sources.redhat.com
5 http://www.frontendart.com

The architecture reconstruction tools consist of
three parts: the architectural knowledge base, the static
view reconstruction tool, and dynamic view
reconstruction tool. The static view reconstruction tool
creates the structural views at various abstraction
levels from the source code model. The dynamic view
reconstruction tool builds the high-level behavior
views from test or simulation traces. The static and the
dynamic view reconstruction tools are integrated in the
same reverse-engineering environment and they can
share the same knowledge base and same abstraction
rules [17].

4.2.1. Architectural knowledge base for
reconstruction

The source code model is not sufficient for creating
meaningful architectural views but we need to
complement it with other domain knowledge (not
directly available in the source code): subsystem
decomposition, component ownership, mapping
between components and source files, mapping
between components and run-time objects, and
organization of components across sites and projects.
This knowledge is essential to the architecture
reconstruction tools to reconstruct both the static and
dynamic views.

The architecture profile and the platform
architecture model define the content of the knowledge
base. However, the mappings between the logical
entities (e.g. components) to the elements in the source
code model (e.g. code files and run-time objects) need
to be recorded manually by interviewing the experts or
from the design documentation. We formalize this
additional information in a set of textual tables and we
convert them to a relational dataset of the same format
like for the source code model. The following table
shows an example of the additional architectural
relatoins:

component compContainFile file
package pkgContainComp component
package pkgContainPkg package
site siteOwnComp component

The maintenance of the tables is carried out by the
software architects of the product family.

4.2.2. Static view reconstruction tool

The static architectural view reconstruction tool
elaborates all the architectural knowledge and creates
the static architectural views: component view,
development view and organizational view. The main
function of the tools is abstraction. The abstraction
process consists of a sequence of operations specified
in relational algebra. For each architectural view we
define the hierarchical structure in terms of

subsystems/components and calculate the high-level
dependencies by propagating the low-level
dependencies to the higher levels.

The output of the whole process, the RE-model, is a
relational dataset and is the base for the conversion to
other formats like DOT6, SVG7, SQL, UML. The
following table shows an example of the additional
relations that are created in the RE-model:

component compDefineInterface interface
component compUseInterface interface
file fileUseInterface interface

4.2.3. Dynamic view reconstruction tool

The dynamic architectural view reconstruction tool
generates high-level behavior views of the system from
the run-time information. A behavior view is presented
as set of UML sequence diagrams or MSCs [17].

The extraction of dynamic information is conducted
in three steps: first instrumenting the source code, then
executing a set of usage scenarios, and finally
collecting the traces. The traces collected during test
and simulation are converted into a trace relationship
in the form of (event, sender, receiver, a label, time
stamp). Two special events, ‘sc_start’ and ‘sc_end’,
delimit the begin and end of a scenario. The initial
MSCs of the dynamic view are created from the traces
of selected scenarios.

The dynamic view reconstruction tool creates the
MSCs that match the same abstraction levels of the
static views. Vertical and horizontal abstraction
techniques [18], such as message and participant
compression, hierarchical grouping, are used to cope
with the complexity of the generated MSCs. So the
tool can present human readable and analyzable MSCs
to the architects. The output MSCs are input to the
UML model synthesis tool for creating other type of
models.

5. Architecture Model Repository

The development teams need an easy access to the
latest architectural information. We regularly publish
the models in the intranet through a web interface and
other visualization formats. This section describes the
central component repository and the various
presentation formats.

5.1. Model Repository and Its Web Interface

The role of the model repository is to store the
relevant architectural information in a relational

6 http://www.research.att.com/sw/tools/graphviz
7 http://www.w3c.org

database. The ART environment supports the MySQL8
database and Oracle9 database. The queries are defined
using SQL. The following table shows an example of
the tables that are stored in the database:

components: general information of components
compInterface: Interfaces and interface types

provided by the components
fileComponent: allocation of files to logical

components
compDependency: High-level dependencies among

components
fileUseInterface: File-level dependencies to the

interfaces of the components
package: Structure of the package hierarchy
packageDependency: High-level dependencies among

packages
The web interface is an alternative representation of

the architectural model that provides a distributed
access to the information and more detailed textual
descriptions, which are weakly supported by the UML
modeling tools.

The web interface provides a standard interface for
querying the model and dynamically generating the
architectural information pages in HTML. The user
can query the model according to various criteria: by
package, by type, by component or simply grepping
the whole model.

For each element in the database (e.g. component,
package, interface), the web interface can generate a
page that contains a short summary (e.g. name, owner,
type, clients and suppliers of the component) and list
of hyperlinks to more detailed information (e.g. the list
of files that implement a particular interface). The
summary page contains also a link to various diagrams
that can be dynamically generated. All the elements in
the pages are hyperlinked, so the user can follow
naturally the chains of dependencies.

The process of generating the web pages is based
on a set of CGI scripts that retrieve the data from the
repository and generate the textural information and
the diagrams. The diagrams are created directly in
SVG or by DOT.

5.2. Architecture Model Transformation Tools

The transformation tools convert the RE-model in
RSF format to other formats like DOT, SVG, SQL,
and UML. The conversion to UML serves as an
interface between the reverse architecting tools and the
model analysis and processing tools (see Figure 1).
The conversion to DOT and SVG is called by Web
interface tools for generating embedded diagrams in
HTML pages. The conversion to SQL is used for

8 http://www.mysql.org
9 http://www.oracle.com

accessing the model repository. Each conversion is
conducted by a dedicated tool.

The UML conversion is achieved by a process
called UML encoding [19]. The process consists of
two steps: concept conversion and model generation.
The whole process of UML encoding is fully
supported by a tool, which is implemented in TCL10
and seamlessly integrated with the reverse-architecting
tools.

The SQL conversion facilitates a data connection
between the model repository and the reverse-
architecting tools. It converts the data format between
repository schema and RSF. Data can also be retrieved
from the repository based on a certain configuration of
the data filter. A tool implemented in Python is used in
ART environment for doing the SQL conversion.

6. Application of ART environment

ART environment has been used in the architecture
design and maintenance of one of the largest product
line of Nokia mobile terminals based on the same OS
and middle-ware platform. The creation of ART
environment was largely motivated by the challenges
in the architecture design and maintenance tasks from
the software development of this product line.

In the early stages of the product line development,
the architecture group (a group of product architects
headed by a chief architect) created a platform
architecture based on the architecture designs of the
first several products. The group also defined a
reference architecture for the product line. The
reference architecture is a kind of meta-model that
defines the unique architectural style of the product
line, component types, the right way of inter-
component communications, the necessary views of
product architecture descriptions, etc. The platform
architecture was described with a set of Excel sheets
and Visio UML diagrams, and it was called “the big
picture” of the product line by the development teams.
The reference architecture was described in an MS-
Word document with some UML diagrams.

The reference architecture and “the big picture”
guided well the design and development of new
products in the beginning. But when the scale of the
product line grew, the development organization
became global, more unanticipated new features were
added, bigger time-to-market pressure came from the
hard competition, and so on, it was unrealistic to have
all necessary changes (even the architecture significant
ones) go through “the big picture”. After this situation
lasted for some time no product architect could clearly

10 http://www.tcl.tk/

answer what was the architecture of an implementation
product and how different it was from the original
architecture design, and if the principles defined in the
reference architecture still hold in the implementations.

We tackled those problems in the following steps
using the tools from ART environment:

1. Creation of the architectural profiles of the
product line based the reference architecture
document. The concepts, such as types of
components and types of dependencies
between components, were used to map the
implementation elements to architecture
components by the reverse architecting toolset
in step 4.

2. Transformation of “the big picture” to a
complete UML model (called F-model, means
the forward engineered model) in ROSE with
the model transformation tool.

3. Reconfiguration of the UML model validation
tool (artDECO) according to the specific
validation rules imposed by the profiles, and
tested the validation tool with the F-model.

4. Recovery of the implementation architecture
of one product release. The model was saved
in the database and all information about the
model could be retrieved via the Web
interface of the database. The model was also
transformed to a ROSE UML model (called
R-model, means reconstructed model).

5. Validation of the R-model against the
architectural profiles using artDECO tool.
The tool generated detailed error reports
about all the violations been found. Compared
the R-model with the F-model using the
model analysis and processing tool, the tool
also generated a report on all the differences
found.

6. Discussion about the results from the above
steps in the architecture group and checked
the error reports with the corresponding
development teams.

The process and tools were fine tuned by repeating
all the steps on the same implementation release. When
we checked the R-model of one implementation
release against the architectural profiles, the number of
violations found from the R-model was surprisingly
high. We used the model operation tool as well to
compare the F-model and a R-model. The results
revealed many changes in the architecture
implementation, for example, there are many
unanticipated interactions between some components
that have no direct designed relations among them.

Another interesting experiment was using the UML
model synthesis tool to generate a component-

relationship model (class diagrams) from the system
testing traces (sequence diagrams) of a set of
scenarios. We compared the generated model with the
R-model using the model operation tool, and
discovered that a few dependencies in this model are
not in the R-model. This fact signals the limitation of
static analysis based reverse-architecting techniques.
For instance, when pointers and dynamically loadable
classes are used in the implementation, the actual
dependencies imposed by them can hardly be found by
static analysis of the source code.

Model Analysis Process
(using model processing

and analysis toolset)

Reverse Architecting
Process (using reverse-

architecting toolset)

R-model n
(Reconstructed

Architecture Model of
Release n)

R-model n-1 or R-
model of any earlier

release

Implementation of
Release n

Implementation of
Release n+1

Design and Implementation
Process (using model

editor or Web interface)

Platform Architecture
Profiles

F-model (Forward
Engineered Platform
Architecture Model)

Analysis
Results

feedback
Platform

Product
Releases

Product Line Life-time

output

input

Figure 5 ART Environment in the product-line

process

ART environment has proved to be necessary and
practical to support the product line development and
guarantee the right evolution of it. Now we are
integrating ART environment with the system
development process of the product-line. Figure 5
shows how the tools from ART environment are used
to support the evolution of the product-line
architecture in a simplified process.

7. Conclusion and Future Work

In this paper we have presented an integrated

architecting environment - ART environment. The
environment, using UML as the architecture modeling
language, facilitates the software architecture design,
architecture model analysis and processing,
architecture model reconstruction and maintenance,
during the entire life cycle of a software product-line.
By establishing the ART environment, we attempt to
tackle the two important problems in software

architecture work mentioned earlier in the paper:
language and tool support. UML, customized with
domain specific architectural profiles, is used as the
architecture description/modeling language. This
allows us: 1) to use the same notation, UML, which
has already been widely used as a program design
language, in both architectural and detailed design; 2)
to use the best available UML CASE-tools in
architecture modeling, at least the model editing, UML
syntax checking, and model management functions of
those tools; and 3) most importantly, to give UML
more precise semantics for architecture modeling by
using architectural profiles, so that the profile based
architecture model validation tool can be used to check
the architecture design.

ART environment provides strong and efficient tool
support to software architecture design and
maintenance in the context of large product-line
development. ART environment has been used
intensively in the architecture design and maintenance
task of a main product-line of Nokia mobile terminal
products, and has also been partly applied in another
product-line. The results achieved so far are
significant to the further development of the product-
lines. We have already started the large-scale
deployment of the environment in Nokia mobile
terminal software development.

Our experience gained during the establishment,
deployment, and application of the environment
demonstrates that the methods used for architecture-
centric software development and maintenance are
heavily influenced by the particular context they are
applied to. The architectural profiles, for instance, are
domain-dependent, which also makes the model
validation rules, model manipulation methods, and
reverse architecting methods domain-dependent.
Therefore, it is necessary that the tools belonging to
the environment are reconfigurable and modifiable so
that they could be conveniently adapted to a new
domain. Further, to be able to support software
development and maintenance tasks in different
domains, it should be easy to integrate new model
manipulation and validation tools to the environment.

The kernel of ART environment is designed to
support those properties mentioned above, for
example, the xUMLi platform is based only on the
UML metamodel and is UML CASE-tool independent,
and the reverse-architecting toolset is highly
modifiable for different implementation techniques.
Due to the fact that ROSE is one of the main software
design CASE-tools at Nokia, the UML model analysis
and processing toolset has specific interfaces to ROSE.
But they can be tailored to support other CASE-tools
with moderate efforts, because most of the model

analysis and manipulation operations are implemented
solely on top of the xUMLi platform.

Our work has been mainly focused on modeling and
reverse-architecting static architectural views. We will
shift our research focus on behavior model/views of
architecture design. The topics we are going to
investigate include: 1) how to define and use
behavioral profiles to regulate the system behavior; 2)
techniques and tool support of creating a behavior
model from the specification, or recover the behavior
model from the test traces (i.e., to further develop the
model synthesis tool of ART environment); and 3)
how to combine the dynamic and static analysis, and
keep the consistency between dynamic and static views
of the architecture.

Acknowledgements

The authors wish to thank Nokia Technology Platform
for supporting ART project, Jan van der Ven (currently
at the University of Groningen, Netherlands) for his
work on implementing the set operations, Jani
Airaksinen for implementing the artDECO tool, and
the TUT PRACTISE/UML group for work on xUMLi.

References

 [1] J. Bosch, Design and Use of Software Architectures:
Adopting and evolving a product-line approach, Addison-
Wesley, 2000.

[2] Clements, P. and Northrop, L., Software Product Lines:
Practices and Patterns, Addison-Wesley, 2001.

 [3] J. Kuusela, “Architectural Evolution, Nokia Mobile
Phones Case”. In Proceedings of the 1st Working IFIP
Conference on Software Architecture (WICSA'1), February
1999, San Antonio, Texas, USA.

[4] M. Jazayeri, A. Ran, F. van der Linden (eds.), Software
Architecture for Product Families Principles and Practice,
Addison Wesley, 2000.

[5] N. Medvidovic and R. N. Taylor, “A Classification and
Comparison Framework for Software Architecture
Description Languages”, IEEE Trans. Softw. Eng. 26, 1 (Jan.
2000), 70-93.

[6] The Object Management Group, homepage. AT
http://www.omg.org/uml, 2003.

[7] C. Hofmeister, R. Nord, D. Soni, “Describing Software
Architecture with UML”, In Proceedings of the TC2 First
Working IFIP Conference on Software Architecture
(WICSA), San Anotonio, Texas, Feb. 1999.

[8] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles and J.E.
Robbins, “Modeling Software Architecture in the Unified
Modeling Language”, ACM Transactions on Software
Engineering and Methodology, Vol.11, No.1, January 2002.

[9] C. Riva, J. Xu and A. Maccari, “Architecting and Reverse
Architecting in UML”, Workshop on Describing Software
Architecture with UML (as part of ICSE 2001), Toronto,
2001.

[10] P. Selonen, and J. Xu, "Validating UML Models
Against Architectural Profiles", In Proceedings of ESEC
2003, Helsinki, Finland, September 2003, pp. 58-67.

[11] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen, P.
Selonen, M. Siikarla, and T. Systä, "xUMLi: Towards a
Tool-independent UML Processing Platform", In: K.
Østerbye (Ed.), Proceedings of the Nordic Workshop on
Software Development Tools and Techniques, 10th NWPER
Workshop, IT University of Copenhagen, Copenhagen,
Denmark, August, pp. 1-15.

[12] J. Peltonen, "Visual scripting for UML-based tools", In
Proceedings of ICSSEA 2000 (vol. 3), Paris, France,
December 2001.

[13] M. Siikarla, J. Peltonen, and P. Selonen, "Combining
OCL and Programming Languages for UML Model
Processing", In Electric Notes in Theoretical Computer
Science (ENTCS) dedicated to the UML 2003 workshops,
Elsevier publishing, San Francisco, CA, USA.

[14] J. Koskinen, J. Peltonen, P. Selonen, T. Systä, and K.
Koskimies, "Towards tool assisted UML development
environments", In 7th Symposium on Programming
Language and Software Tools, Szeged, Hungary, June 2001.

 [15] P. Selonen, K. Koskimies, and M. Sakkinen,
"Transformations Between UML Diagrams", In Journal of
Database Management, 14(3), Idea Group, 2003, pp. 37-55.

 [16] C. Riva, “Reverse Architecting: an Industrial
Experience Report”, Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE2000), Brisbane,
Australia, 23-25 November 2000.

[17] ITU-T. Recommendations Z.120. ITU –
Telecommunication Standardization Sector, Geneva,
Switzerland, May 1996.

 [18] Riva, C. and Rodriguez, J.V., “Combining Static and
Dynamic Views for Architecture Reconstruction”, In
Proceedings of the 6th European Conference on Software
Maintenance and Reengineering (CSMR’02), 2002.

 [19] Y. Yang and J. Xu, “Encoding Informal Architectural
Descriptions with UML: an Experience Report”, In
Proceedings of UML 2003, San Francisco, CA, USA.

http://www.omg.org/uml

	1. Introduction
	2. Overview of ART Environment
	3. Model Analysis and Processing Toolset
	3.1. UML Model Validation Tool
	3.2. UML Model Operation Tool
	3.3. UML Model Synthesis Tool
	3.4. xUMLi – UML Processing Platform

	4. Reverse Architecting Toolset
	4.1. Source Code Analysis Tools
	4.2. Architecture Reconstruction Tools
	4.2.1. Architectural knowledge base for reconstruction
	4.2.2. Static view reconstruction tool
	4.2.3. Dynamic view reconstruction tool

	5. Architecture Model Repository
	5.1. Model Repository and Its Web Interface
	5.2. Architecture Model Transformation Tools

	6. Application of ART environment
	7. Conclusion and Future Work
	Acknowledgements
	References

