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Abstract 

 
We present the work of establishing an integrated 

environment that facilitates architecture design, 
reconstruction, and maintenance in the entire life cycle 
of a software product line.  This architecting 
environment (ART environment) has been used in 
modeling and analysis of both the designed platform 
architecture model and the reverse-engineered product 
implementation architecture models of different 
releases in a big product line of Nokia mobile 
terminals. ART environment comprises tools for 
architecture model validation, architecture model 
analysis and processing, and reverse architecting. The 
ART environment fits the current software development 
process inside Nokia, and is integrated with the design 
and documentation tools that have already been used 
by Nokia software architects. UML, after being 
customized with UML profiles for architecture design, 
is used as the architecture modeling language in ART 
environment.  
 
1. Introduction 
 

Software architecture is of vital importance not only 
to the quality of the resulting software system but also 
to the control and management of the software 
development process. Different architecture-centric 
approaches have been adopted in industrial software 
development; especially in the development of 
software product-lines [1][2][3][4]. The growing 
importance of architectures implies an essential change 
in the general software development paradigm: 

software development is becoming architecture-
centric, in contrast to the traditional code-centric view.  

Although the architecture-centric development is 
getting more and more popular, in practice software 
architects are still facing big challenges of applying it 
effectively. Rather than concentrating on making 
architectural decisions and designs, they have to 
struggle with many non-architectural factors. Among 
many others, there are two important factors that 
prevent the architecture-centric approaches from 
playing a more decisive role in product-line software 
development. First, there is no universal architecture 
description/modeling language (ADL) [5] that can be 
used in all the domains. Usually an ADL is either 
dedicated only to a specific architecture style or is too 
general to model the architectural details of large and 
complex systems. Second, there is hardly any adequate 
architecting tool support for the daily work of software 
architects. In many companies tools like Microsoft 
Office are used with some kinds of informal notations 
(graphical or textual) for the description and 
documentation of software architecture. With such tool 
support it is very difficult to analyze, modify and 
maintain the architecture descriptions. 

Many people now believe UML [6] is the way to go 
in software architecture design, because, as a wide-
spectrum standard notation, UML allows the use of the 
same notation in both architectural and detailed design, 
and it has better tool support comparing with ADLs. It 
is relatively easy to proceed from a UML architecture 
design to system and component design, where UML 
and OO programming paradigm are usually used. 
However using UML and UML tools cannot really 
solve the two problems mentioned earlier. On one 
hand, UML, as a general purpose OO design notation, 



lacks appropriate specification concepts at the 
architecture level [7][8]. On the other hand, current 
UML-based tools lack support for specifying various 
architectural rules, for checking the conformance of a 
design against architectural conventions, for 
constructing new designs according to given 
architectural rules, for managing variability supported 
by a product-line architecture, for creating 
architectural views from design-level models, and for 
establishing tracing capabilities between 
implementation and architectural models. All these are 
crucial tasks in architecture-centric software 
development. Without such support, UML-based 
architecting tools remain little more than specialized 
graphical editors. Both the research from others [7][8] 
and our experience from the software development 
practices at Nokia [9] suggest that there is an urgent 
need for effective approaches and tools to support 
architecture modeling with UML.  

In order to make UML appropriate for describing 
software architecture in our domain, we customized 
the UML metamodel with special UML profiles: 
architectural profiles. A profile is essentially defined 
by extending the specification of the UML metamodel 
using UML’s built-in mechanisms. An architectural 
profile is an UML profile that presents a set of 
architectural rules and specifies a subset of UML 
models that can be considered “legal” in a particular 
context. We have developed the technique and tool to 
validate a given UML model against the architectural 
profile [10]. 

In this paper we describe our work at Nokia in 
establishing an integrated UML based architecting 
environment – ART environment. ART environment 
has been setup as the result of a research project at 
Nokia Research Center in cooperation with the 
Institute of Software Systems of Tampere University 
of Technology. ART environment has been used in the 
architecting work of one of the main mobile phone 
product lines in Nokia.  

The paper is structured as follows.  Section 2 gives 
the overview of ART environment. From section 3 to 
section 5 we present its three main toolsets: section 3 
describes the model analysis and processing toolset; 
section 4 introduces the reverse architecting toolset 
and section 5 presents the model repository and its 
Web interface. In section 6 we show how ART 
environment has been used in the design and 
maintenance of the software architecture of a product 
line. Section 7 draws the conclusion of the paper and 
discusses some of the future work.  
 

2. Overview of ART Environment 
 

ART environment consists of three main toolsets: 
the architecture model analysis and processing toolset, 
the reverse-architecting toolset, and the model 
repository and its Web interface.  

The model analysis and processing toolset works 
with UML architecture models including not only the 
models created by architects using a UML CASE-tool 
(i.e. IBM Rational ROSE1) but also the UML models 
generated by the reverse-architecting tools. It allows 
the software architects to create the UML architectural 
profiles and architectural design models, check 
architectural models against the architectural profiles, 
generate architectural views at different abstraction 
levels and from different viewpoints, and finally 
analyze architectural models and views with adequate 
UML model operations. The aim of this part is to 
provide software architects a complete and consistent 
view of the architecture under design or maintenance, 
and to help them to make the right architectural 
decisions. 

The reverse architecting toolset is used by the 
software architects to re-engineer or recover the 
architectural model from an implementation. A re-
engineered or recovered implementation model of the 
architecture shares the same concepts and same model 
structure with the designed architectural model, and 
can provide the same architectural views at the same 
abstraction levels as the design model does.  Hence, 
the same architectural profiles can be used to check the 
recovered architectural models to discover any 
violations in the implementation. The comparison of 
the recovered model with the designed model can also 
reveal architecturally significant changes introduced 
during implementation. For a fast evolving product- 
line, being able to monitor the changes and keep the 
evolution under control is extremely important. 

 The model repository and its Web interface 
provide an efficient way for managing and retrieving 
all the architecture model elements. A model 
repository is necessary when one has to maintain the 
architectural models of a large number of 
implementation releases of a product-line.  In ART 
environment we use a relational database to store 
architectural models. A Web interface to the model 
repository provides the easy access to the model 
repository to software architects located in different 
sites.  

Figure 1 gives an overview of all the tools and the 
data flows among them. 
                                                           
1IBM Rational Rose Enterprise Edition. On-line at: http://www-
136.ibm.com/developerworks/rational/products/rose  
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Figure 1. ART Environment overview 
ROSE is one of the main user interfaces of ART 
nvironment and the tools that handle UML models are 

plemented as ROSE add-ins. The software architects 
an use ROSE to create, edit or view architectural 
odels and profiles, and then invoke the ART UML 
odel analysis and processing tools from ROSE. The 
ternal model representation is only based on UML 
andard and the UML model processing platform of 
RT environment is independent of any UML CASE-
ols. Therefore ART environment, in principle, can 

asily switch from ROSE to another UML CASE-tool 
s its model editing and viewing user interface. The 
rchitecture reconstruction tools and the Web interface 
f the model repository provide the other two user 
terfaces. The first one allows the architects to start 

nd control the reverse-architecting process, and view 
e intermediate results. The latter one allows the 

rchitect to query any information about the 
rchitectural models in the repository database using a 

eb browser; the results are shown in a textual format 
r in different graphical formats. 

ART environment is designed to be reconfigurable 
nd modifiable. When the environment is deployed in 
e development process of different product lines, the 
ols can be tailored and re-configured for the specific 

roperties of each product line. For example, the rules 
nd patterns for extracting models from source code 
re different for an OO programming language 

implementation than for a C language implementation; 
different architectural profiles require different model 
validation rules; a product line may decide to use a 
different UML CASE-tool than we originally 
considered or even does not use any UML CASE-tool. 
All these factors should be considered when deploying 
the environment to a specific product line.  

 
3. Model Analysis and Processing Toolset 
 
3.1. UML Model Validation Tool 
 

An UML model validation tool, artDECO, is used 
for validating architecture views against given profiles. 
It is a collection of Python2 components implemented 
on top of xUMLi [11], each representing a particular 
set of conformance and auxiliary operations [10], and 
VISIOME [12] scripts describing configurations of the 
conformance operations. The conformance operations 
together with a set of architecture profiles effectively 
specify an architecture description language for the 
selected domain. 

An artDECO script uses xUMLi to import the 
architectural profiles and views from ROSE, and then 
executes the conformance operations one by one, each 

                                                           
2 http://www.python.org 



validating the views against the profiles focusing on a 
particular validation aspect. The results are reported to 
the user, either in the form of an XML error report, or 
by providing a visual browser that can be used with 
ROSE. Conceptually, the architectural profiles are 
interpreted as standard UML profiles, imposed on the 
views in a posteriori fashion. 

<<metaclass>>
Subsystem

<<stereotype>>
MyClient

<<stereotype>>
MySupplier

<<stereotype>>

<<metaclass>>
Dependency

<<stereotype>>
MyDependency

<<stereotype>><<stereotype>>
<<MyDependency>>

<<MyClient>>
...a MyClient

<<MySupplier>>
...a MySupplier

 
Figure 2 Example of an architectural profile 

As an example of using the UML model processing 
capabilities of xUMLi, consider querying for the valid 
stereotypes as shown in the left-hand side of Figure 2. 
In the framework, offering a UML interface supporting 
COM automation and an interpreter for Object 
Constraint Language (OCL) [6], the operation is 
performed on classifiers as follows [13]: 

 
st = profile.find(\ 
 "element.oclAsType(Class).clientDependency->exists(cd |" \ 
 "cd.stereotype.name->includes('stereotype')" \ 
 "and cd.supplier.stereotype.name->include("metaclass") )" ) 
 
for cls in model.find("element.oclIsKindOf('Classifier')"): 
  for cst in cls.stereotype: 
    if len(st.select("element.name = '" + cst.name + "'")==0: 
      # handle class with wrong stereotype 
 

The first part of the operation queries for all 
properly defined stereotypes in the stereotype 
definition profiles, while the latter iterates over all 
classifiers in the view and checks whether they have a 
valid stereotype. 

An example of architecture profiles is shown in 
Figure 2. The left-hand side of the figure introduces 
three new architectural types: MyClient, MySupplier, 
and MyDependency. The right-hand side of the figure 
shows a new constraint imposed on the instances of 
MyClient and MySupplier: there can only be a 
dependency of type MyDependency from a MyClient 
to a MySupplier. Further examples of the conformance 
operations, validation configurations, and architectural 
profiles are given in [10].  

Screenshot in Figure 3 shows a part of an artDECO 
configuration opened in the VISIOME editor. The 
script involves four activities (one auxiliary operation 
for filtering the views, two conformance operations, 
and an error to XML conversion operation), and two 

synchronization bars. The script has two inputs, one 
for architectural profiles and one for architectural 
views, and an output for the reported incidents. 

 

 
Figure 3 Example of an artDECO configuration 

3.2. UML Model Operation Tool 
 

As a part of the environment, a set of UML model 
processing operations [14] is introduced for analyzing 
and manipulating the architecture models. A profound 
example of a model operation is searching for, and 
filtering of, information in given UML models. More 
expressive UML model operations usually produce 
new UML diagrams on the basis of existing UML 
diagrams, or modify the existing ones. Examples of 
model operations are transformation operations, 
projection operations, and set operations. 

A transformation operation takes a (set of) UML 
diagram(s) as its input operand and based on the 
information implied by this diagram produces a new 
UML diagram of another type. A set operation takes 
two UML models as its input operands and produces a 
new UML model (e.g. merging and slicing of 
diagrams). A projection operation produces a new 
UML model based on an existing one, the new model 
being a projection of the original one (e.g. abstraction 
or slicing). Other useful operation categories include 
visualization operations (e.g. highlighting, layout) and 
user interface operations (e.g. graphical dialogs). A 
subset of the abovementioned operations have been 
implemented as xUMLi components and used as a part 
of the architecture validation process described in this 
paper. 

In particular, the set operations have been applied 
on both comparing consecutive versions of the reverse 
engineered architecture models, and comparing reverse 
engineered architecture models against forward 
engineered ones. The models, stored in ROSE 
repositories, are imported into xUMLi platform. The 
corresponding concepts are then derived using 
information about e.g. names, metaclasses, stereotypes, 
container namespaces, and relationship end elements. 



The results, namely the common and disjoint parts, are 
reported both in a textual format and in ROSE using 
summary diagrams and color highlighting. 

As part of the model analysis and processing tools, 
a set of ROSE scripts (as ROSE add-ins) are developed 
to automatically integrate the subsystem models into a 
complete and consistent system model in ROSE. 
Because there are tens of subsystems and interfaces 
and hundreds of components, it is difficult to create by 
hand views that would show inter-subsystem 
dependencies derived from the component-to-interface 
dependencies specified in the subsystem units. There is 
a need for these kinds of views when creating platform 
architecture descriptions (that show domains larger 
than a single subsystem) and when checking that 
architectural rules are followed (who is allowed to use 
what). 

The results created by the scripts are recorded 
directly in the model, which facilitates the use of the 
information by other ART tools that can use Rose 
models as input. The scripts were created as ROSE 
scripts due to schedule and resource constraints. We 
plan to make a full xUMLi implementation later to 
replace the ROSE scripts. 

 
3.3. UML Model Synthesis Tool 
 

Of the model operations described in Section 3.2, 
transformation operations can be also seen as model 
synthesis operations. They are particularly useful when 
used together with the set operations. For instance, to 
check whether a given sequence diagram is in 
agreement with an architectural model represented as a 
class diagram, the sequence diagram can be 
transformed into another class diagram, and they can 
be compared using the set operations. The reported 
differences can then be examined to conclude whether 
or not the original sequence diagram implied e.g. non-
existing operations or relationships between 
participating classifiers. The transformation simply 
maps the classifier roles and messages of the sequence 
diagram to classes, associations and operations of a 
class diagram. In addition, a collection of heuristics 
can be applied, for example, to generate interface 
hierarchies, composition relationships, and 
multiplicities [15]. 

 
3.4. xUMLi – UML Processing Platform 
 

Many UML-based CASE-tools provide APIs 
allowing external components to access and even 
modify the model data. However, they fall short in 
providing stronger support for advanced UML model 

processing activities and typically have only limited 
support for UML metamodel. To overcome this 
problem, xUMLi [11], a CASE-tool independent 
software platform has been developed for UML model 
processing. It allows users to build arbitrary UML 
model operations and to combine them using the 
VISIOME scripting mechanism to contruct more 
complicated operations, examples of which are given 
in Sections 3.1, 3.2 and 3.3. 

The platform consists of VISIOME, a UML 
specialization layer, and a set of standard components. 
In general terms, xUMLi can be seen as a middleware 
meant for model processing purposes. The 
environment is not dependent of any specific CASE-
tool, but offers a plug-in interface for components that 
transfer models between a tool repository and the data 
model. It is therefore possible to support several 
different CASE-tools or UML model repositories. 
Currently xUMLi is integrated with ROSE. 

 

 
VISIOME scripting engine 

UML support 

XMI Rose

Export/Import Model operations

...

xUMLi

UMLi

VISIOME Sripts 

 
Figure 4. The layered architecture of xUMLi 

The platform can be conceptually understood as a 
layered architecture, as depicted in Figure 4. The 
lowest layer consists of a scripting engine providing 
domain-independent, general data model, and an OCL 
interpreter. The second lowest level specializes the 
general data model and provides access to UML 
models according to the UML metamodel. This layer is 
used through a UML interface (UMLi) which serves as 
the basic API for xUMLi. Various components have 
been implemented on top of xUMLi, including export 
and import components for bridging other UML tools 
and model processing operations. 

UMLi has been implemented using the COM 
component model with automation support, enabling 
the usage of any language supporting COM 
automation (e.g. Python, Visual Basic). This kind of a 
general interface has turned out to be a valuable asset 
especially for exploratory, research-oriented 
implementation of various advanced UML processing 
capabilities. In particular, the Python components can 
be written on a high conceptual level, without deep 
understanding of the underlying implementation. 

 
4. Reverse Architecting Toolset 
 



The reverse architecting toolset provides the latest 
architectural information from the implementation of 
various products of the family. The goal is to extract 
the elements and their dependencies according to the 
profile defined. The reconstruction process takes into 
account the source code for identifying the low-level 
software dependencies and the domain information for 
the structural and behavioral aspects [16].  

Simplicity, ease of use and modifiability are the 
design philosophy of the toolset. The reverse-
engineering data is represented with a relational format 
and stored in textual files with RSF (Rigi Standard 
Format) 3. We specify the operations on the dataset 
with the relational algebra and we use the Python 
scripting language for programming the reconstruction 
process. Our reconstruction approach also provides 
support for combining static and dynamic views of the 
recovered architecture models [18]. 

 
4.1. Source Code Analysis Tools 

 
The source code analysis tools detect the 

architecturally significant elements from the 
implementation by searching the source code for 
particular code patterns. The tools traverse the code 
files and detect the code patterns defined by regular 
expressions. The output of the analysis is the source 
code model, a relational dataset containing the low-
level system dependencies. The following table shows 
an example of the relations in the source code model: 

file sendMessage msgType 
file call function 
file defineMsgEvent msgType 
file defineFunction function 

The various members of the product family are 
parsed by the Python scripts and the results are merged 
by concatenating the files. The final result is a super 
set of all the low-level dependencies. Depending on 
the implementation language of the system, we can 
complement the data from the Python scripts with the 
other dependencies from other source code analyzers 
such as RedHat SourceNavigator4 and Columbus5. 

One key aspect is that the meta-model of the tools is 
not bound to a particular schema but it can be easily 
adapted to the system under analysis in order to extract 
those relations that are architecturally relevant.  

 
4.2. Architecture Reconstruction Tools  
 

                                                           
3 http://www.rigi.csc.uvic.ca/ 
4 http://sources.redhat.com 
5 http://www.frontendart.com 

The architecture reconstruction tools consist of 
three parts: the architectural knowledge base, the static 
view reconstruction tool, and dynamic view 
reconstruction tool. The static view reconstruction tool 
creates the structural views at various abstraction 
levels from the source code model. The dynamic view 
reconstruction tool builds the high-level behavior 
views from test or simulation traces. The static and the 
dynamic view reconstruction tools are integrated in the 
same reverse-engineering environment and they can 
share the same knowledge base and same abstraction 
rules [17].  

 
4.2.1. Architectural knowledge base for 
reconstruction 

The source code model is not sufficient for creating 
meaningful architectural views but we need to 
complement it with other domain knowledge (not 
directly available in the source code): subsystem 
decomposition, component ownership, mapping 
between components and source files, mapping 
between components and run-time objects, and 
organization of components across sites and projects. 
This knowledge is essential to the architecture 
reconstruction tools to reconstruct both the static and 
dynamic views. 

The architecture profile and the platform 
architecture model define the content of the knowledge 
base. However, the mappings between the logical 
entities (e.g. components) to the elements in the source 
code model (e.g. code files and run-time objects) need 
to be recorded manually by interviewing the experts or 
from the design documentation. We formalize this 
additional information in a set of textual tables and we 
convert them to a relational dataset of the same format 
like for the source code model. The following table 
shows an example of the additional architectural 
relatoins: 

component compContainFile file 
package pkgContainComp component 
package pkgContainPkg package 
site siteOwnComp component 

The maintenance of the tables is carried out by the 
software architects of the product family. 

 
4.2.2. Static view reconstruction tool 

The static architectural view reconstruction tool 
elaborates all the architectural knowledge and creates 
the static architectural views: component view, 
development view and organizational view. The main 
function of the tools is abstraction. The abstraction 
process consists of a sequence of operations specified 
in relational algebra. For each architectural view we 
define the hierarchical structure in terms of 



subsystems/components and calculate the high-level 
dependencies by propagating the low-level 
dependencies to the higher levels.  

The output of the whole process, the RE-model, is a 
relational dataset and is the base for the conversion to 
other formats like DOT6, SVG7, SQL, UML. The 
following table shows an example of the additional 
relations that are created in the RE-model:  

component compDefineInterface interface 
component compUseInterface interface 
file fileUseInterface interface 

 
4.2.3. Dynamic view reconstruction tool 

The dynamic architectural view reconstruction tool 
generates high-level behavior views of the system from 
the run-time information. A behavior view is presented 
as set of UML sequence diagrams or MSCs [17]. 

The extraction of dynamic information is conducted 
in three steps: first instrumenting the source code, then 
executing a set of usage scenarios, and finally 
collecting the traces. The traces collected during test 
and simulation are converted into a trace relationship 
in the form of (event, sender, receiver, a label, time 
stamp). Two special events, ‘sc_start’ and ‘sc_end’, 
delimit the begin and end of a scenario. The initial 
MSCs of the dynamic view are created from the traces 
of selected scenarios.  

The dynamic view reconstruction tool creates the 
MSCs that match the same abstraction levels of the 
static views. Vertical and horizontal abstraction 
techniques [18], such as message and participant 
compression, hierarchical grouping, are used to cope 
with the complexity of the generated MSCs.  So the 
tool can present human readable and analyzable MSCs 
to the architects. The output MSCs are input to the 
UML model synthesis tool for creating other type of 
models. 

 
5. Architecture Model Repository 
 
The development teams need an easy access to the 
latest architectural information. We regularly publish 
the models in the intranet through a web interface and 
other visualization formats. This section describes the 
central component repository and the various 
presentation formats. 

 
5.1. Model Repository and Its Web Interface 
 

The role of the model repository is to store the 
relevant architectural information in a relational 
                                                           
6 http://www.research.att.com/sw/tools/graphviz 
7 http://www.w3c.org 

database. The ART environment supports the MySQL8 
database and Oracle9 database. The queries are defined 
using SQL. The following table shows an example of 
the tables that are stored in the database:  

components: general information of components 
compInterface: Interfaces and interface types 

provided by the components 
fileComponent: allocation of files to logical 

components 
compDependency: High-level dependencies among 

components 
fileUseInterface: File-level dependencies to the 

interfaces of the components 
package: Structure of the package hierarchy 
packageDependency: High-level dependencies among 

packages 
The web interface is an alternative representation of 

the architectural model that provides a distributed 
access to the information and more detailed textual 
descriptions, which are weakly supported by the UML 
modeling tools. 

The web interface provides a standard interface for 
querying the model and dynamically generating the 
architectural information pages in HTML. The user 
can query the model according to various criteria: by 
package, by type, by component or simply grepping 
the whole model.  

For each element in the database (e.g. component, 
package, interface), the web interface can generate a 
page that contains a short summary (e.g. name, owner, 
type, clients and suppliers of the component) and list 
of hyperlinks to more detailed information (e.g. the list 
of files that implement a particular interface). The 
summary page contains also a link to various diagrams 
that can be dynamically generated. All the elements in 
the pages are hyperlinked, so the user can follow 
naturally the chains of dependencies. 

The process of generating the web pages is based 
on a set of CGI scripts that retrieve the data from the 
repository and generate the textural information and 
the diagrams. The diagrams are created directly in 
SVG or by DOT.  

 
5.2. Architecture Model Transformation Tools 
 

The transformation tools convert the RE-model in 
RSF format to other formats like DOT, SVG, SQL, 
and UML. The conversion to UML serves as an 
interface between the reverse architecting tools and the 
model analysis and processing tools (see Figure 1). 
The conversion to DOT and SVG is called by Web 
interface tools for generating embedded diagrams in 
HTML pages. The conversion to SQL is used for 
                                                           
8 http://www.mysql.org 
9 http://www.oracle.com 



accessing the model repository. Each conversion is 
conducted by a dedicated tool. 

The UML conversion is achieved by a process 
called UML encoding [19]. The process consists of 
two steps: concept conversion and model generation. 
The whole process of UML encoding is fully 
supported by a tool, which is implemented in TCL10 
and seamlessly integrated with the reverse-architecting 
tools. 

The SQL conversion facilitates a data connection 
between the model repository and the reverse-
architecting tools. It converts the data format between 
repository schema and RSF. Data can also be retrieved 
from the repository based on a certain configuration of 
the data filter. A tool implemented in Python is used in 
ART environment for doing the SQL conversion. 

 
6. Application of ART environment 
 

ART environment has been used in the architecture 
design and maintenance of one of the largest product 
line of Nokia mobile terminals based on the same OS 
and middle-ware platform. The creation of ART 
environment was largely motivated by the challenges 
in the architecture design and maintenance tasks from 
the software development of this product line.  

In the early stages of the product line development, 
the architecture group (a group of product architects 
headed by a chief architect) created a platform 
architecture based on the architecture designs of the 
first several products. The group also defined a 
reference architecture for the product line. The 
reference architecture is a kind of meta-model that 
defines the unique architectural style of the product 
line, component types, the right way of inter-
component communications, the necessary views of 
product architecture descriptions, etc. The platform 
architecture was described with a set of Excel sheets 
and Visio UML diagrams, and it was called “the big 
picture” of the product line by the development teams. 
The reference architecture was described in an MS-
Word document with some UML diagrams.  

The reference architecture and “the big picture” 
guided well the design and development of new 
products in the beginning. But when the scale of the 
product line grew, the development organization 
became global, more unanticipated new features were 
added, bigger time-to-market pressure came from the 
hard competition, and so on, it was unrealistic to have 
all necessary changes (even the architecture significant 
ones) go through “the big picture”. After this situation 
lasted for some time no product architect could clearly 
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answer what was the architecture of an implementation 
product and how different it was from the original 
architecture design, and if the principles defined in the 
reference architecture still hold in the implementations. 

We tackled those problems in the following steps 
using the tools from ART environment: 

1. Creation of the architectural profiles of the 
product line based the reference architecture 
document. The concepts, such as types of 
components and types of dependencies 
between components, were used to map the 
implementation elements to architecture 
components by the reverse architecting toolset 
in step 4. 

2. Transformation of “the big picture” to a 
complete UML model (called F-model, means 
the forward engineered model) in ROSE with 
the model transformation tool. 

3. Reconfiguration of the UML model validation 
tool (artDECO) according to the specific 
validation rules imposed by the profiles, and 
tested the validation tool with the F-model. 

4. Recovery of the implementation architecture 
of one product release. The model was saved 
in the database and all information about the 
model could be retrieved via the Web 
interface of the database. The model was also 
transformed to a ROSE UML model (called 
R-model, means reconstructed model). 

5. Validation of the R-model against the 
architectural profiles using artDECO tool. 
The tool generated detailed error reports 
about all the violations been found. Compared 
the R-model with the F-model using the 
model analysis and processing tool, the tool 
also generated a report on all the differences 
found. 

6. Discussion about the results from the above 
steps in the architecture group and checked 
the error reports with the corresponding 
development teams. 

The process and tools were fine tuned by repeating 
all the steps on the same implementation release. When 
we checked the R-model of one implementation 
release against the architectural profiles, the number of 
violations found from the R-model was surprisingly 
high. We used the model operation tool as well to 
compare the F-model and a R-model. The results 
revealed many changes in the architecture 
implementation, for example, there are many 
unanticipated interactions between some components 
that have no direct designed relations among them.  

Another interesting experiment was using the UML 
model synthesis tool to generate a component-



relationship model (class diagrams) from the system 
testing traces (sequence diagrams) of a set of 
scenarios. We compared the generated model with the 
R-model using the model operation tool, and 
discovered that a few dependencies in this model are 
not in the R-model. This fact signals the limitation of 
static analysis based reverse-architecting techniques. 
For instance, when pointers and dynamically loadable 
classes are used in the implementation, the actual 
dependencies imposed by them can hardly be found by 
static analysis of the source code. 
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Process (using reverse-

architecting toolset)

R-model n
(Reconstructed

Architecture Model of
Release n)
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Product
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Figure 5 ART Environment in the product-line 

process 

ART environment has proved to be necessary and 
practical to support the product line development and 
guarantee the right evolution of it. Now we are 
integrating ART environment with the system 
development process of the product-line. Figure 5 
shows how the tools from ART environment are used 
to support the evolution of the product-line 
architecture in a simplified process.  
 
7. Conclusion and Future Work 

 
In this paper we have presented an integrated 

architecting environment - ART environment. The 
environment, using UML as the architecture modeling 
language, facilitates the software architecture design, 
architecture model analysis and processing, 
architecture model reconstruction and maintenance, 
during the entire life cycle of a software product-line. 
By establishing the ART environment, we attempt to 
tackle the two important problems in software 

architecture work mentioned earlier in the paper: 
language and tool support. UML, customized with  
domain specific architectural profiles, is used as the 
architecture description/modeling language. This 
allows us: 1) to use the same notation, UML, which 
has already been widely used as a program design 
language, in both architectural and detailed design; 2) 
to use the best available UML CASE-tools in 
architecture modeling, at least the model editing, UML 
syntax checking, and model management functions of 
those tools; and 3) most importantly, to give UML 
more precise semantics for architecture modeling by 
using architectural profiles, so that the profile based 
architecture model validation tool can be used to check 
the architecture design. 

ART environment provides strong and efficient tool 
support to software architecture design and 
maintenance in the context of large product-line 
development. ART environment has been used 
intensively in the architecture design and maintenance 
task of a main product-line of Nokia mobile terminal 
products, and has also been partly applied in another 
product-line.  The results achieved so far are 
significant to the further development of the product-
lines. We have already started the large-scale 
deployment of the environment in Nokia mobile 
terminal software development. 

Our experience gained during the establishment, 
deployment, and application of the environment 
demonstrates that the methods used for architecture-
centric software development and maintenance are 
heavily influenced by the particular context they are 
applied to. The architectural profiles, for instance, are 
domain-dependent, which also makes the model 
validation rules, model manipulation methods, and 
reverse architecting methods domain-dependent. 
Therefore, it is necessary that the tools belonging to 
the environment are reconfigurable and modifiable so 
that they could be conveniently adapted to a new 
domain. Further, to be able to support software 
development and maintenance tasks in different 
domains, it should be easy to integrate new model 
manipulation and validation tools to the environment.  

The kernel of ART environment is designed to 
support those properties mentioned above, for 
example, the xUMLi platform is based only on the 
UML metamodel and is UML CASE-tool independent, 
and the reverse-architecting toolset is highly 
modifiable for different implementation techniques. 
Due to the fact that ROSE is one of the main software 
design CASE-tools at Nokia, the UML model analysis 
and processing toolset has specific interfaces to ROSE. 
But they can be tailored to support other CASE-tools 
with moderate efforts, because most of the model 



analysis and manipulation operations are implemented 
solely on top of the xUMLi platform. 

Our work has been mainly focused on modeling and 
reverse-architecting static architectural views. We will 
shift our research focus on behavior model/views of 
architecture design. The topics we are going to 
investigate include: 1) how to define and use 
behavioral profiles to regulate the system behavior; 2) 
techniques and tool support of creating a behavior 
model from the specification, or recover the behavior 
model from the test traces (i.e., to further develop the 
model synthesis tool of ART environment); and 3) 
how to combine the dynamic and static analysis, and 
keep the consistency between dynamic and static views 
of the architecture. 
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