
Asset Recovery and Incorporation into Product Lines

Jens Knodel1, Isabel John1, Dharmalingam Ganesan1, Martin Pinzger2,
Fernando Usero3, Jose L. Arciniegas4, Claudio Riva5

1Fraunhofer Institute for Experimental

Software Engineering (IESE),
Kaiserslautern, Germany

{knodel, john, ganesan}@iese.fraunhofer.de

2Institute for Informatics,
University of Zurich,
Zurich, Switzerland
pinzger@ifi.unizh.ch

3Abengoa, Telvent,

Seville, Spain
fernando.usero@telvent.abe

ngoa.com

4Dep. de Ingeniería de
Sistemas Telemáticos,

Universidad Politécnica de
Madrid, Madrid, Spain

jlarci@dit.upm.es

5Software Architecture
Group, Nokia Research

Center, Helsinki, Finland
claudio.riva@nokia.at

Abstract

Software product lines aim in having a common

platform from which several similar products can be
derived. The elements of the platform are called assets
and they are managed in an asset base being part of the
product line infrastructure. The products are then built on
top of the assets. Assets can include own developments,
open source or third-party software modules, as well as
design and project documents. In the context of the
European-wide project FAMILIES we concentrated on
techniques used to build the platform with focus on the
recovery of these assets from existing systems. We present
an approach on how to incorporate existing assets into
the product line infrastructure. Thereby we explicitly
distinguish the asset origins and the different information
sources available. The incorporation is a quality-driven
process that is backed up by a set of reverse engineering
techniques to evaluate the asset’s internal quality. The
quality assessment of an asset is the critical measurement
for industrial development organizations in order to
incorporate assets into their product line infrastructure.

Keywords: architecture, asset, asset incorporation, asset
recovery, product line, product line architecture, product
line infrastructure, reverse engineering.

1. Introduction

Software product lines are rarely created right away on
the green field but they emerge when a domain becomes
mature enough to sustain their long-term investments.
The typical pattern is to start with a small set of products
to quickly enter a new market. As soon as the business

proves to be successful new investments are directed to
consolidating the software assets. The various products
are migrated towards a flexible platform where the assets
are shared and new products can be derived from.

Thereby software product lines aim at sharing more
than just the development effort (i.e., source code,
components, design concepts, requirements, and test
cases), they improve the quality, reduce time-to-market,
and increase the number of derived products. Typically,
product lines are built on top of existing, related software
systems whereas the common artifacts among these
systems are integrated into a common asset base managed
in the product line infrastructure.

In order to keep the quality of the asset base high, the
product line architects have to decide whether or not an
existing asset becomes part of the asset base, in particular
to identify the needs for adaptation of the asset to make it
suitable for the whole product line. The derived decision
either is reuse as-is, or reuse and adapt, or reconstruct, or
refactoring or (re-) implement. Since high value assets
can com from different origins (i.e., legacy, in-house, 3rd
party, open source), the incorporation of these assets
differs slightly because the asset origin dictates the
available different information to assess the asset’s
internal quality.

In this work, we present a generic asset incorporation
process to integrate existing assets into the asset base, and
relate a set of reverse engineering techniques to the
recovery of assets of different origins. The reverse
engineering techniques are classified based on the
information source available accompanying an asset
including static and dynamic, document, and historic
analysis techniques as well as architecture evaluation and
conformance checking techniques. They aim at

populating an asset base and migrating existing single
systems to the product line engineering paradigm. The
same support is gained when enriching the asset base of a
product line in order to address new requirements, or
business goals.

The remainder of the paper is structured as follows:
Section 2 introduces the product line engineering
development process model developed in the FAMILIES
project, then section 3 presents the generic asset
incorporation approach. Section 4 continues with an asset
classification, which is the basis for the selection a set of
asset reverse engineering techniques presented in section
5. Section 6 presents related work, while section 7 finally
draws conclusion on this work.

2. Product Line Engineering

Product line engineering introduces a systematic
development approach that explicitly supports a family of
similar systems. Such a family of products is designed to
take advantage of their common aspects and predicted
variabilities of a product line [1]. Figure 1 depicts the
FAMILIES reference model, an overview on how an
asset base (i.e., a product line infrastructure) supports the
product line engineering activities. Domain engineering
activities have the goal to develop, maintain and extend
the infrastructure in form of an asset base. The domain
engineering activities are balanced with application
engineering activities, which actually build the concrete
products. Application engineering activities use the core
assets provided by the product line infrastructure.
Thereby the generic artifacts contained in the asset base
are used to build concrete products by resolving the

variabilities. The resolution is made explicit, for instance
by means of decision models.

Thus, central and crucial for successful product line
engineering, are the core assets which contain the
components that have a high product line impact, that
provide key features, major variants or core functionality.
When evolving a product line, or in a migration towards
product line engineering, the software development
organizations have the option to include existing assets
(not developed in domain engineering, which means the
asset are not prepared to suit the product line needs in
most cases) instead of creating assets with similar
functionality themselves. The main decision criteria are
the quality of the existing assets and there suitability for
the product line. When assessing an existing asset, the
development organization has to decide for each asset on
what to do to populate the asset base:
• As-is Reuse: Reuse the asset as it is, no or only small

modifications to the asset are required. The asset
quality and suitability is in such a manner so that it
can be migrated to the product line infrastructure
with limited effort.

• Recovery and adaptation: Recover an existing asset
from an asset producer with reverse engineering
analyses techniques and use the information to
improve or rebuild the asset and adapt it so it fits into
the product line infrastructure and fulfills the
acceptance criteria (refactoring).

• (Re-) Implementation: Development and realization
from scratch of a new asset and therefore rejecting
the existing asset. In case of a re-implementation
concepts coming from existing assets may contribute
to the implementation.

Product
Definition

Economical
Analysis

System
Analysis/Design

Application
Analysis

Application
Design

Application
Implementation

Scoping
Economical

Analysis
Domain System
Analysis/Design

Domain
Analysis

Domain
Design

Domain
Implementation

System & Application Testing

Domain Testing

Derivation Activities

Core Assets

Configuration Management

Change Management

Reverse Engineering Activities

System Family
Direct Engineering

System Family
Reverse Engineering

Application Engineering

Domain Engineering

Product
Definition

Economical
Analysis

System
Analysis/Design

Application
Analysis

Application
Design

Application
Implementation

Scoping
Economical

Analysis
Domain System
Analysis/Design

Domain
Analysis

Domain
Design

Domain
Implementation

System & Application Testing

Domain Testing

Derivation Activities

Core Assets

Configuration Management

Change Management

Reverse Engineering Activities

System Family
Direct Engineering

System Family
Reverse Engineering

Application Engineering

Domain Engineering
Figure 1: Development Process Model for Product Lines

In the next sections we show how existing assets can
be incorporated into the product line infrastructure, how
to classify assets, and introduce a common process for
asset recovery.

3. Asset Incorporation

We use the Software Process Engineering Meta-model
(SPEM, see [2], developed to describe concrete software
development processes) as notation for the asset
incorporation process. The process to incorporate assets
into the product line infrastructure is mainly focused on
domain engineering activities, in particular domain
analysis, domain design, and domain implementation (see
Figure 2).

In the activity of domain analysis, three essential sub

processes were identified:
• Need Analysis: The results of need analysis are

generic asset descriptions formulating the needs the
asset has to fulfill in order to be appropriate for the
product line infrastructure. For this purpose, the
product line architects participate on requirement
engineering activities such as requirements
elicitation, negotiation and so on. The need analysis
depends on the internal processes of the development
organization; it may range from formal requirement
engineering activities to agile modeling approaches.
The need analysis has to make clear why an
(existing) asset is needed.

• Asset Recovery: The output of this activity is a set of
existing assets that are considered to fulfill the needs
previously identified. This activity is performed
together by product line architects, developers, and
domain experts.

• Asset Evaluation: In this process, we propose to use

existing standards for process evaluations, for
instance ISO 14598 [3] or GQM [4]. However, if
time constraints advice to not use such a formal
approach, other approaches can be used, such as
internal processes. Nevertheless, in this paper an
asset evaluation is considered to be mandatory,
because after knowing the generic asset to be
incorporated, this asset has to pass an evaluation
processes where its impact, cost, and quality is
assessed. At this stage a decision may be made: If
there are no assets that pass all the evaluation criteria,
another need analysis should be carried out,
otherwise the evaluation boundary is reduced and the
best product fulfilling the evaluation is selected.

In the activity of domain design, there is an important

process to be performed:
• Architectural Asset Incorporation: When including

existing assets in the asset base of the product line, it
is necessary to do this compliant to the product
family architecture. It is one of the most critical steps
because of the interaction with other core assets,
potential side effects, and technical constraints. For
instance, an unexpected interaction may lead to the
instability of the architecture, which has to be
avoided. Thus, as a result of this process the
architectural compliance has to be ensured, in case it
has to be updated. In realization of these architectural
adaptations, impacts on the domain design are very
likely. This activity is driven by the product line
architects.

Finally, in the activity of domain implementation,

there is also an important process to be performed:
• Technical Asset incorporation: This incorporation

differs from the architectural asset integration in that
technical aspects of the incorporation are taken into

 Domain
Engineering

Domain
Design Domain

Analysis Domain
Implementation

Domain
Design

Architectural Asset
Incorporation

Domain
Implementation

Asset Incorporation

Domain
Analysis

Need
Analysis

Asset Evaluation
(GQM, ISO 14598)

Asset
Discovery

Figure 2: Domain Engineering

Figure 3: Results per Major Activity

 Need
Analysis

Selected
 Generic Assets

 Architectural
 Asset

 Incorporation

Product Line
 Architecture

Asset
Evaluation

Results of evaluation
 (GQM, ISO 14598)

Asset
Recovery

Set of COTS

Technical Asset
Incorporation

Core Asset
 Components

account. Thus, interactions with other core assets are
taken into account at low level. Configuration,
change and traceability management activities
become essential. This activity may involve a wide
range of technical problems, but these types of
problems can be solved. However, if there is an
architectural mismatch, the problem will be still
present even if the technical incorporation works
well. Product line developers and component
engineers are responsible of accomplishing this task.

Figure 4 depicts an overview of the process activities

and roles, and how the different activities interact, while
Figure 3 presents the results of the major activities.
Thereby all the roles, products and sub-processes are
include, so that it is possible to see the “whole picture”.

4. Asset Classification

An existing asset has a distinct origin, describing the
development unit that produced the asset.
• Legacy: The asset is developed, maintained, and

managed by the same development organization unit

that is responsible for developing the product line
infrastructure (i.e., the domain engineering).

• In-house: The asset is developed, maintained, and
managed by another in-house development
organization unit that is not responsible for the
domain engineering. The unit responsible for domain
engineering has only limited influence on and access
to the other unit since the other unit has other
organizational objectives to achieve.

• 3rd party: Assets have a 3rd party origin when they
are developed by another organization not under

control of the product line development organization.
This means that the domain engineers are typically
not available but there might be a support by the
asset producers (e.g., hotlines). Typical examples for
3rd party assets are component of the shelf (COTS).

• Open source: Open source communities can produce
assets that are of interest for a development
organization. The development organizations can
even decide to contribute to the open source
development themselves, but they do not have to.
Popular examples of open source assets that can be
incorporated into the asset base of a product line
infrastructure are, for instance the Eclipse platform
and its various plug-ins.

• Combinations: Assets that evolved over a longer
time period can have combined origins from the
above list. This is especially true for large-scale
development organizations that buy and sell
organizational development units, and for open
source assets that are adapted by a development
organization to their specific needs.

Table 1: Asset Information Sources

 Depending on the asset origin there are different

information sources from which assets are retrieved.
Table 1 lists these information sources.

In this paper we assume typical cases ignoring the
facts that individual cases may differ and respective
development organizations have a certain degree of
maturity producing artifacts as prescribed by most
software development process models. The availability of
information sources is classified by the asset origin, an

Asset Evaluation

Architectural Asset
Incorporation

Need Analysis

Technical Asset
Incorporation

Results of Evaluation
(GQM, ISO 14598)

Generic
Assets

Selected

Product Line
Architecture

Core Asset
Components

SF Analists

Product Line
Architects

Product Line
Developers

Set of COTS

Asset Recovery

Domain
Expert

Figure 4: Asset Incorporation Phases and Roles

Information
Sources

Legacy In-
House

3rd
Party

Open
Source

Requirements
specification + ? - -

Architecture
description + ? - -

Design
documentation + ? - -

Interface
documentation ? ? X -

Source code X X - X

Test cases X + - +

User manual X X X X

Version history ? ? - X

Bug reports ? ? - X

Asset expert + ? - -

“X” denotes that the information source is available in all
cases, a “+” in most cases, “?” means the availability is
unclear, while a “-“ means for the unavailability of the
information source.

5. Asset Recovery Techniques

Table 1 presented the different information sources
that are available for different assets, depending on their
origin. Based on this classification, it is possible to select
appropriate reverse engineering technique to support the
asset incorporation process as described in section 3. We
first present a generic recovery process that spans over
the individual techniques, and then we present a selection
of techniques addressing the specific information sources
(or a combination of information sources).

5.1. Recovery Process

The implemented system is essential in the recovery
process, but it involves other factors and sub-processes.
The recovery process is made up of five input data, five
sub-processes, and four significant results.

The input data required for the recovery process are:
Available documentation, Source code, System in run-
time, Patterns and Expert information.

Several activities should be achieved in the recovery
process (see Figure 5). The first one is Information
extraction, their input data are the Available
documentation and Source code. This process can be
aided by experts [5], by obtaining information from user
documentation [6], using techniques such as gathering
[7], lexical analysis [8] or pattern matching [9]. The
Information extraction objective is to obtain a Conceptual
model the system.

Static-view extraction is the most common approach in
the re-engineering process. By using tools the system
static view is obtained from source code (classes,
packages, interfaces, relationships between them and
other relevant architectural elements). Sometimes this
model is complemented by information from conceptual
model [5]. As a result of this process an architectural
static view is obtained [10].

Dynamic-view extraction obtains the system behavior.
That is, by obtaining the traces from system-user or
system-environment interactions [10]. As result of this
process, an architectural dynamic view is obtained [8].

Abstraction, two essential objectives should be carried
out in this process: 1) Reduce the complexity of the
preliminary architecture, by increasing the abstraction
level and 2) filter the preliminary architecture to the
interest topic, for example; communication, security,
management, etc. As result of the abstraction process, a
refined architecture is obtained.

Finally in Presentation, once the refined architecture is

obtained, it is polished by experts and supported with
reference patterns (see [5], [9], [11], [12]. As result of this
process, the Recovered architecture is obtained that
represents the ”as-built” architecture of a system (set of
architectural views regarding different architectural
aspects).

In the recovery process, there are partial results:
Conceptual model or system meta-architecture, in MDA
model known as Computer Independent Model (CIM), it
is a set of concepts and the relationship between them.
Preliminary architecture is made up of static and dynamic
views of the system. Refined architecture are abstracted
views of the preliminary architecture used to isolate
certain architectural aspect. Finally, Recovered
architecture, the refined architecture is rarely the
definitive architecture; with the help of experts and
patterns, an architecture close to “as-built” architecture of
the system is obtained.

5.2. Reverse Engineering Techniques

Figure 5: Recovery Process

Source code, SCM
information

Available
documentation

PatternsExpert
information

Abstraction

Presentation

Recovered
Architecture

Refined
Architecture

Information
extraction

Conceptual
model

Static-view
extraction

Dynamic -view
extraction

System in
run time

Preliminar
architecture

The reverse engineering techniques introduced in this
section are ordered by the type of analyses, namely static,
dynamic, document, and historic analyses.

5.2.1. Static Analyses

Static analyses extract information mainly from the
source code but without executing it. The output of static
analyses range amongst others: static decomposition,
hierarchies, static metric values, responsibilities,
interfaces, naming conventions, dependencies, etc.

5.2.1.1. Architecture Evaluation

Static information can be used to refine a model
(idealized architecture) with the actual architecture. This
can be done to iteratively refine the expected mental
model and the documentation before a specific activity
and to track the difference and guide the architecture
towards a to-be status.

Figure 6: Example Architecture Evaluation

This activity is supported by an architecture evaluation

tool (e.g., see the reflexion model technique [13] or the
SAVE tool [14]). In both techniques experts describe the
components and the relationships they expect among
them, then they map these components to code constructs
(e.g., files, classes, methods). The tool compares the
difference between the expected relationships and the
ones found in the system. The experts refine his model or
the mapping, or the reverse engineers adapt the fact
extraction process.

Figure 6 depicts an example for such an architecture
evaluation. The red arrows indicate the divergences
between the mental model and the dependencies extracted
from the source code.

5.2.1.2. Interface Analysis

Documented interfaces are one of the prerequisites of
effective reuse of components. Reuse works when the
developers know which functionality is provided by a
component and how to access the functionality
implemented in such a component. Components in the
context of interface analysis are collections of source

code entities (e.g., files, groups of logically related
routines, single or groups of classes or packages, or even
whole subsystems). Applications of the interface analysis
technique work with the following motivations:
• Reduction of the complexity of given components

with respect to the number of offered routines by
minimizing the provided interfaces to only the
actually used interfaces when to facilitate reuse.

• Documentation of source code spots in usage lists
where to change accesses to a component when
migrating the software system towards component-
based development.

• Extension of architectural descriptions (e.g., the
module and/or the code view) by explicit notation of
the provided functionality of a component.

• Migration of a group of entities towards an
encapsulated component with explicit boundaries.

Figure 7: Example Interface Analysis

Interface analysis reveals the connections of the

subject component to the rest of the software system, or if
it should become a real component in future, it documents
the spots to be changed and how the future component is
embodied in the system (see [15] for details).

5.2.1.3. Technique: Conformance and Recovery
Processes

Conformance and recovery are two processes used in
evolutionary software development. They are used as
mechanisms for a quick feedback, to increase code
reusability, and to increase quality. In traditional systems
these processes allow implemented assets to be reused
and compare them to a standard. Product line
conformance and recovery processes have an additional
value; both can be used to locate commonalities, variation
and variation points. The orchestration of these processes
is presented in Figure 8. The processes proposed focus on
quality aspects [3] such as performance, security,
usability and so on.

The conformance process needs previous phases
where objectives and focus are defined. Both take input
stakeholder requests and the quality of service as relevant.
Then, two parallel activities should be achieved. The
system architecture is obtained from the implementation
domain, using the recovery process (recovered
architecture). But conformance with respect to a
particular quality is complex to solve between
architectures, so a filtering process is required in order to
obtain the Significant Implemented Assets (SIA); the

filtering process only selects assets related to a particular
quality. On the other hand, similar processes should be
achieved from the standard domain. The standard usually
has a rich documentation, therefore an exemplification
process deducts the generic architecture (standard
architecture), if it is not defined in the standard (partial or
totally). And finally, in the same way as in the
implementation domain, the Significant Standard Assets
(SSA) are extracted using a filtering process.

Significant assets for a specific Quality

Standard domainImplementation domain

Recovered architecture
view for specific quality

Recovered architecture

Assets
AssetsRecovered

Assets

Assets
SIA

Standard architecture
view for a specific quality

Standard architecture

Assets
Assets

Standard Assets

Assets
SSA

Filtration

Conformance

SIA-SSA SIA-SSASIA SSA

U

Implemented system
(open source)

Standard

Recovery Exemplification

Filtration

Figure 8: Conformance Process

Conformance process compares and identifies

differences and coincidences, a number of methods and
techniques could be used, such as: Ontology-based
algorithms that search for common artifacts in a
architecture [16], Numerical and graph-based algorithms
to reduce complexity, Use cases to isolate parts of a
system, Comparison of the abstract syntax tree of similar
systems, Measurement of similarities using metrics
(internal or external as defined to measure quality
characteristics [17]) and so on.

Three relevant results are obtained:
• Proposal for enhancement of the SIA (SSA-SIA): as

a product of the difference between the SSA and
SIA, new requirements are identified and some
deficiencies have been located in the current
implemented architecture.

• Proposal for a standard (SIA-SSA): as a product of
the difference between the SIA and SSA, some
deficiencies have been located in the reference
standard; it is frequent when technology goes beyond
the standards.

• Common and variation point identification (SIA ∩
SSA): The common assets are identified and
variation points located, it may be the main result of

an implementation accreditation with respect to a
standard.

5.2.2. Dynamic Analyses

Dynamic analyses extract information by
instrumenting and executing source code. The output of
dynamic analyses range amongst others: runtime traces,
runtime behavior, execution and runtime metrics, source
code element interaction, etc.

5.2.2.1. Technique: Dynamic Traces

The main aim of using dynamic or run-time traces is to
recover sequence diagram. Sequence diagrams show the
actually interaction among software components together
with the messages they exchange over a period of time. A
sequence diagram captures interaction among entities (for
e.g., classes, components). In addition, it captures thread
interaction. Sequence diagrams are a good source for
understanding how a particular scenario or use case
works when a program runs.

Such information for instance can be used to analyze
the performance. Knowing how many objects are created
when a program runs and the life-time of each object
helps us to build a run-time model.

One of the challenges in recovering sequence diagrams
is level of abstraction. A running program contains low-
level information like function/method call, field/variable
referenced by a function/method, thread starting another
threads. This low-level information is difficult to analyze
manually and deriving useful knowledge from it needs
abstraction.

To build abstraction into the run-time traces, we make
use of static information (e.g., classes, packages, files,
folders, components, subsystems or layers) and use-cases
(to find a high-level meaning for the interaction, e.g.,
provided by user manuals). Once an abstracted sequence
diagram is constructed, this can be used to check
consistency between specified sequence diagram and the
running system

Figure 9: Example Dynamic Traces

5.2.3. Document Analyses

Document analyses extract information by analyzing
the documentation of a system. The output of document
analyses range amongst others: use cases, features, use
case diagrams, description of functionality,
commonalities and variabilities between products,
conceptual models, domain wording, etc.

5.2.3.1. Technique: CaVE

CaVE (Commonality and Variability Extraction) is an
approach enhanced with techniques for structured and
controlled integration of user documentation of existing
systems into the product line. Until now, the information
needed to build a product line model is elicited
interactively with high expert involvement. As domain
experts have a high workload and are often unavailable
this high expert involvement is a risk for the successful
introduction of a product line engineering approach in an
organization. The CaVE approach overcomes the
following problems:
• Domain experts have a high workload and are hardly

available so we need to relieve the experts by
eliciting of product line related information from
documents.

• There is a lack of guidance on how to integrate
legacy information found in documents into product
line models.

• There is no variability management approach that is
general enough to integrate all kinds of artifacts into
a product line model.

• Single system elicitation methods cannot be taken as
they are because multiple documentations have to be

compared, Commonalities and variabilities have to
be elicited and additional concepts (e.g. abstractions,
decisions) are needed.

With CaVE, common and variable features, Use Case

elements, decisions and requirements can be elicited. The
approach consists of the following phases:
• Preparation: The product line engineer prepares the

user documentation and selects the appropriate
extraction pattern.

• Analysis: The product line engineer analyses the
documents with the selected extraction pattern and
marks the elements found.

• Selection, and change: The selected elements are put
together to partial product line artifacts and presented
to the expert who can change elements and add
additional information

The first two steps of the approach can be performed

by persons who just have a slight domain understanding,
they do not have to be domain experts. The third step
requires involvement of domain experts (see [6] for
details.

5.2.4. Historic Analyses

Historic analyses extract information by analyzing the
data of a system. The output of historic analyses
comprises change dependencies and bug dependencies.
They indicate coupling dependencies used to assess the
quality of assets and dependencies between them.

5.2.4.1. Technique: Change Coupling Analysis

For the extraction of change and bug dependencies we
retrieve modification reports from versions systems (e.g.,
CVS) and problem (bug) reports from bug tracking
systems (e.g., Bugzilla) and store them in the Release
History Database (RHDB) [19]. Both reports refer to a
product (i.e., asset) that is managed by these systems.

Change couplings are computed based on modification
reports. A change coupling between two assets is
established whenever changes to the two assets have been
committed to the repository by an author in the same
transaction. A bug dependency refers to change couplings
with respect to a problem that has been fixed. The
strength of change couplings is computed for a specified
observation period, for instance from the last release to
the recent release.

The number of change and bug dependencies and their
strength is input to the asset incorporation process, in
particular, to the architectural as well as technical asset
incorporation processes. Change couplings denote
interactions between assets on the architectural level as

Figure 10: Example CaVE

well as technical level. For instance, on the technical level
we determine change couplings between source files. By
abstracting these coupling to the level of architecture,
such as between features or software modules, we
determine change couplings on the architectural level
[20], [21]. On both levels we can use the number and
strength of change couplings to assess the feasibility and
effort to incorporate an asset into the asset base.

The technique can be applied to the different kinds of
assets that are managed by configuration management
systems including the source code as well as the different
project documents.

6. Related Work

Related work concerns in general architecture
recovery and feature location techniques used to extract
and determine assets for building an asset base.

Regarding architecture recovery a number of tools
have been developed that can be used to extract higher-
level views on the implementation of software systems.
Tools are, for example Bookshelf [24], Dali [25], or Rigi
[23]. They follow the Extract-Abstract-View Metaphor
described in [22]. Most of these tools differ in the
underlying fact extraction technique, in the methods and
details of fact representation, and in the analysis and
visualization techniques.

In [22] Ebert et al. introduced GUPRO which is an
integrated workbench that supports program
understanding of heterogeneous systems on arbitrary
levels of granularity.

The SAR method described by Krikhaar [5]
concentrates on creating higher-level views on the
architecture. The approach is based on Relational
Partition Algebra [12] and defines a process for selecting
the information sources from which higher-level views
are abstracted.

Riva proposed a view-based architecture
reconstruction approach named NIMETA [26]. Similar to
Krikhaar the approach is based on relational algebra.
NIMETA emphasizes the scrupulous selection of
architectural concepts and architecturally significant
views that are reflecting the stakeholders’ interests.

Regarding feature location a number of approaches
exist. Concerning the feature location in source code
Wilde et al. presented pioneering work. They introduced
the Software Reconnaissance approach that based on the
execution of test cases determines features [27].

Eisenbarth et al. based their approach on the Software
Reconnaissance technique and extended it by using the
concept analysis technique for determining features [18].

A similar approach has been also presented by Wong
et al. They analyze execution slices of test cases to
determine the source code units that implement a feature

[28]. These techniques can be integrated into our asset
recovery and incorporation process.

7. Conclusion

Incorporation of assets into the asset base of a product
line infrastructure has to ensure that the quality of the
assets to be integrated suits the needs of the product line.
Therefore, it is crucial to have a well-defined defined
integration process and a set of reverse engineering
techniques to analyze the assets and to assess its internal
quality. This work presents such an asset integration
process along with a set of used reverse engineering
techniques.

In this work, we present a quality-drive asset
incorporation process to integrate existing assets into the
asset base, and relate a set of reverse engineering
techniques to the recovery of assets of different origins.
According to the information sources we present reverse
engineering techniques to recover assets from existing
information sources, such as static and dynamic,
document, and historic analysis.

Out asset incorporation process evaluates recovered
assets with respect to their need and quality. Quality is
crucial because one asset may break the product line
infrastructure, therefore we steer the incorporation
process by evaluations (based on ISO or on GQM tree) to
ensure the required qualities of the incorporated assets.
This process assures the incorporation of those assets that
are needed and fulfill that quality criteria whereas the
other recovered assets are left out.

Future work includes refinement of the reverse
engineering techniques and development of new
techniques addressing information source not yet dealt
with (e.g., test cases).

Another topic of ongoing work is to formulate
guidelines that help the product line architects to monitor
the asset incorporation process, and to develop
customized GQM trees, which steer the analysis activities
for distinct domains (assuming that different domains will
differ in the required qualities as well).

8. Acknowledgements

We are grateful to the national ministries of Austria,
Germany, Finland, and Spain for partially funding our
work under EUREKA 2023/ITEA-ip00009 ’FAct based
Maturity through Institutionalization Lessons-learned an
Involved Exploitation of System-family engineering’
(FAMILIES).

Jose L. Arciniegas is a visiting scientist from
Universidad del Cauca, Colombia. His work has been
partially developed in the project TRECOM, granted by

the Spanish Ministry of Science and Technology under
reference TIC2002-04123-C03-01.

9. References

[1] Weiss, David M.; Lai, Chi Tau Robert: Software
Product-Line Engineering. A Family-Based
Software Development Process, Addison-Wesley,
1999.

[2] Object Management Group (OMG): Software
Process Engineering Metamodel Specification
version 1.1, 2002.

[3] ISO 9126. Software product evaluation: Quality
characteristics and guidelines for their use. ISO/IEC
9126. ISO, Geneva, Switzerland, 1991.

[4] Basili, V. R., and D. M. Weiss: A Methodology for
Collecting Valid Software Engineering Data, IEEE
Transactions on Software Engineering, Vol. SE-10,
pp. 728–738, 1984.

[5] Krikhaar, R. Software Architecture Reconstruction.
Ph.D. Thesis, University of Amsterdam, June 1999.

[6] John, I Dörr, J. Elicitation of Requirements from
User Documentation, Ninth International Workshop
on Requirements Engineering: Foundation for
Software Quality. Refsq '03. Klagenfurt/Velden,
Austria, June 2003.

[7] Boucetta, S. Hadjami Ben Ghezala, H and Kamoun,
F. Architectural Recovery and Evolution of Large
Legacy Systems. Proceedings of the International
Workshop on the Principles of Software Evolution.
Japan. July, 1999.

[8] Kazman, R. O’Brien, L.and Verhoef, C,
Architecture Reconstruction Guidelines, 2nd
Edition (CMU/SEI-2002-TR-034), 2002.

[9] Sartipi, K. and Kontogiannis, K. A Graph Pattern
Matching Approach to Software Architecture
Recovery, Proceedings of the IEEE International
Conference on Software Maintenance, Florence,
Italy, pp. 408-419, November, 2001.

[10] Ahmed E. Hassan and Richard C. Holt, Architecture
Recovery of Web Applications. In Proceedings of
the International Conference on Software
Engineering, Orlando, Florida, pp. 19-25, May
2002.

[11] Guo, G. Atlee, J. and Kazman, R. A Software
Architecture Reconstruction Method. Proceedings
of the First Working IFIP Conference on Software
Architecture, San Antonio, Texas, pp. 225-243,
February, 1999.

[12] Feijs, L, Krikhaar, R., and Van Ommering, R., A
Relational Approach to Support Software
Architecture Analysis, Software Practice and
Experience, Vol 28(4), pp. 371-400, April 1998.

[13] G. C. Murphy, D. Notkin, K. Sullivan: Software
Reflexion Models: Bridging the Gap between

Source and High-level Models, ACM Software
Engineering Notes, 1995.

[14] P. Miodonski, T. Forster, J. Knodel, M. Lindvall, D.
Muthig: Evaluation of Software Architectures with
Eclipse, Kaiserslautern, (IESE-Report 107.04/E),
2004.

[15] J. Bayer et al: Definition of Reference Architectures
based on Existing Systems, (IESE-Report
034.04/E), 2004.

[16] OMG. Ontology definition Metamodel. Request for
proposal. August 18. 2003.

[17] ISO/IEC JTC1/SC7/WG6 N461. Information
Technology – Software product quality –Part 1:
Quality Model, Part 2: External Metrics, Part 3:
Internal Metrics, Part 4: Quality In Use Metrics.
ISO/IEC 9126, November 1999.

[18] Eisenbarth, T., Koschke, R., and Simon, D.:
Locating Features in Source Code, IEEE
Transactions on Software Engineering, March 2003.

[19] Michael Fischer, Martin Pinzger, and Harald Gall.
Populating a Release History Database from
Version Control and Bug Tracking Systems. In
Proceedings of the International Conference on
Software Maintenance, pp. 23–32, Amsterdam,
Netherlands, September 2003.

[20] Michael Fischer, Martin Pinzger, and Harald Gall.
Analyzing and Relating Bug Report Data for
Feature Tracking. In Proceedings of the 10th
Working Conference on Reverse Engineering, pp.
90–99, Victoria, B.C., Canada, November 2003.

[21] Martin Pinzger, Michael Fischer, and Harald Gall.
Towards an Integrated View on Architecture and its
Evolution. Electronic Notes in Theoretical
Computer Science, 127(3):183–196, April 2005.

[22] Jürgen Ebert, Bernt Kullbach, Volker Riediger, and
Andreas Winter. Gupro - Generic Understanding of
Programs. Electronic Notes in Theoretical
Computer Science, 72(2):59–68, 2002.

[23] Kenny Wong. The Rigi User’s Manual — Version
5.4.4. University of Victoria, 1998.

[24] Patrick Finnigan, Richard C. Holt, Ivan Kallas,
Scott Kerr, Kostas Kontogiannis, Hausi A. Müller,
John Mylopoulos, Stephen G. Perelgut, Martin
Stanley, and Kenny Wong. The software bookshelf.
IBM Systems Journal, 36(4):564–593, November
1997.

[25] Rick Kazman and S. Jeromy Carriere. Playing
detective: Reconstructing software architecture from
available evidence. Automated Software
Engineering, 6(2):107–138, 1999.

[26] Claudio Riva. View-Based Software Architecture
Reconstruction. Ph.D. thesis, Vienna University of
Technology, 2004.

[27] N. Wilde and M.C. Scully, Software
Reconnaissance: Mapping Program Features to

Code, Journal of Software Maintenance: Research
and Practice. vol. 7, pp. 49-62, Jan. 1995.

[28] W.E. Wong, S.S. Gokhale, J.R. Horgan, and K.S.
Trivedi, Locating Program Features Using
Execution Slices, In Proceedings of the IEEE Symp.
on Application-Specific Systems and Software
Engeering and Technology, pp. 194-203, Mar.
1999.

