
Bridging the Concrete and Logical Domains
for Software Architecture Reconstruction

Claudio Riva
Nokia Research Center

P.O. Box 407, FIN-00045
Helsinki, Finland

{claudio.riva}@nokia.com

Abstract

Software architecture reconstruction is essentially the
process of creating a set of architectural views with the in-
formation recovered from the actual implementation of a
software system. While recovering the basic facts about the
implementation can be automated with source code analyz-
ers, mapping them to logical concepts is mainly a concep-
tual activity. We investigate the problem of how to bridge
the logical and concrete domains for the purpose of cre-
ating architectural views. Our conclusion is that there is
still a considerable gap between the theoretical framework
and the practical experiences. This hinders the possibility
of developing a general, rigorous and effective architecture
reconstruction method.

1 Introduction

Software architecture reconstruction is the process of ob-
taining a documented architecture for an existing system.
It is a reverse engineering process where the available evi-
dence (such as source code, existing documentation, inter-
views with the experts) is analyzed in order to create a de-
scription of the high-level logical dependencies of the sys-
tem (i.e. its software architecture). In our previous work [6],
we have proposed a view-based architecture reconstruction
process where we explicitly specify the views to recover.
We distinguish between the target views (i.e. the goals of
the reconstruction) and the source views (i.e. the sources of
information).

While the architectural views are focused on thelogi-
cal aspects of the system, the source views model thecon-
cretefacts about the implementation. This gap often causes
a mismatch between the results of the reverse engineering
methods (mainly focused on the code-level aspects) and the
needs of the software architecture audience (mainly inter-

ested in the logical and runtime dependencies). In this pa-
per, we investigate the research question of how to bridge
the logical and concrete domains for the purpose of cre-
ating architectural views. Any architecture reconstruction
method must pay a careful attention to this aspect. Our ap-
proach is the following: (1) we outline a reference frame-
work of viewpoints based on the current state of art in the
fields of software architecture and reverse engineering, (2)
we conduct one case study where the viewpoints have been
explicitly defined and, (3) we draw several observations by
comparing the viewpoints used in practice against the refer-
ence framework.

2 Overview of the reference viewpoints

Although a number of architectural viewpoints has been
proposed by various authors, there is no general consen-
sus on what viewpoints are needed for forward architecting.
Some viewpoints from different authors are actually very
similar while others are focused on very specific domains.
Moreover software practitioners typically develop their own
set of viewpoints, architectural styles, rules and policies that
suit their own domain. In their classical paper [4], D. Perry
and A. Wolf noted that even if the system was originally de-
signed according to standard architectural styles, the ubiq-
uitous customization of architectural elements turns the sys-
tem into an unique creation where different architectural
styles are overlaid.

We propose a reference framework that consists of three
distinct layers: code, design and architecture. At the top of
the framework, the architecture viewpoints are concerned
with the logical aspects of the software system and provide
a comprehensive and abstract understanding of the impor-
tant design decisions. They are focused on thelogical as-
pects and not on theconcretedetails of the implementation
that are addressed by the design and code viewpoints. The
book of P. Clements et al. [1] proposes a unified set of archi-

1



tectural viewpoints for documenting software architectures
that we take as a reference for this layer.

The design viewpoint describes the essence of a software
program at an abstract level. By providing an authentic rep-
resentation of the source code (but with less details than
the code viewpoint), it documents the design decisions at
the class and function level about the implementation of the
logical design with concrete elements. We can establish a
one-to-one mapping between elements in the source code
and the elements in the design view. As a reference, we take
the FAMIX specification that models the design aspects of
object oriented software in a language-independent way [2].

3 Observations on the case study

We have applied the view-based reconstruction process
to one software system developed by Nokia. The goal was
to recover an architectural model of the overall structure
of the system and to check the conformance of the imple-
mentation against certain architectural rules. We created an
ad hoc reconstruction process that produces the information
needed for the conformance checking as we have presented
in our previous work [5]. The case study demonstrates how
the viewpoints have been explicitly defined with the stake-
holders in order to address their specific needs. We can
make several general observations about our initial research
question:

• The gap between the design and architecture view-
points is considerable. There is no simple guideline
for mapping the abstract and generic architectural con-
cepts of the architecture layer to the elements of the
underlying design layer. The case study shows that
such mapping has been carefully recovered by the im-
plementation by examining the existing documentation
and interviewing the experts. Without their help, we
would have risked of missing or misinterpreting the
important aspects of the system.

• The concepts of the architecture viewpoints are too
generic and open to various interpretations. This hin-
ders the development of a general and precise recon-
struction process. This also strengthes the importance
of concept determination activity for tailoring the re-
construction to the architectural style.

• The design viewpoint fails to formalize those concepts
that are not strictly part of the design domain. The
source viewpoint of the case study contains elements
extracted from the build process, from the symbol def-
initions and from the organizational structure. In the
present form, the design viewpoint is incomplete as
a source viewpoint but it typically needs to be aug-
mented with additional concepts.

• The architecture viewpoints are not suitable to repre-
sent the target viewpoints of the reconstruction pro-
cess. While there are some similarities, we can ardu-
ously map the target viewpoints of the case study to
the reference viewpoints of the architecture layer.

• The reference framework succeeds in providing the ba-
sic material and understanding for creating the source
and target viewpoints.

4 Conclusions and Future Work

In this article we investigate the problem of bridging the
logical and concrete domains to support architecture recon-
struction. We can conclude that there is still a consider-
able gap between the theoretical framework based of view-
points and the practical reconstruction of software architec-
tures. In the practical case, linking the logical and concrete
domains is a manual and peculiar process that has been
achieved by reasoning on the architectural concepts with
the help of the experts. Moreover, the experience with the
particular system still plays a key role for delivering useful
architectural views. Hence, the difficulties of developing a
general, rigorous and effective architecture reconstruction
method.

In the future, we will evaluate how the recent UML 2.0
specification suits our needs. We also invite the community
to conduct similar experiences by comparing their recon-
struction experiences against the reference framework that
we have proposed in this article.

References

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Lit-
tle, R. Nord, and J. Stafford.Documenting Software Architec-
tures: Views and Beyond. Addison Wesley, 2003.

[2] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 –
the FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[3] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match, or, why it’s hard to build systems out of existing parts.
IEEE Software, 12(6):17–26, November 1995.

[4] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture.ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, October 1992.

[5] C. Riva. View-based Software Architecture Reconstruction.
PhD thesis, Vienna University of Technology, October 2004.

[6] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: View-driven software architecture re-
construction. InProc. of 4th Working IEEE / IFIP Confer-
ence on Software Architecture (WICSA 2004), 12-15 June
2004, Oslo, Norway, pages 122–132. IEEE Computer Soci-
ety, 2004.

2


	Introduction
	Overview of the reference viewpoints
	Observations on the case study
	Conclusions and Future Work

